
BROADWAY OUTFALL STORMWATER RETROFIT PROJECT

Department of Environmental Protection Contract Number WM793

In cooperation with: Southwest Florida Water Management District Project Number W241 and the City of Temple Terrace

Phase II Monitoring CDS Unit and Constructed Pond Final Report

Submitted by Betty Rushton, Ph.D.

Southwest Florida Water Management District 2379 Broad Street Brooksville, FL 34604

The Southwest Florida Water Management District (District) does not discriminate upon the basis of any individual's disability status. This non-discrimination policy involves every aspect of the District's functions, including one's access to, participation, employment, or treatment in its programs or activities. Anyone requiring reasonable accommodation as provided for in the Americans With Disabilities Act should contact the Resource Management Department at 352-796-7211 or 1-800-423-1476 (Florida only); TDD 1-800-231-6103 (Florida only); Fax 352-797-5806/Suncom 663-5806.

BROADWAY OUTFALL STORMWATER RETROFIT PROJECT

Department of Environmental Protection Contract Number WM793

In cooperation with: Southwest Florida Water Management District Project Number W241 and the City of Temple Terrace

Phase II Monitoring CDS Unit and Constructed Marsh Progress Report for Year One

Submitted by Betty Rushton, Ph.D.

June 2006

Southwest Florida Water Management District 2379 Broad Street Brooksville, FL 34604 <u>bettyrs@atlantic.net</u>

TABLE OF CONTENTS

INTRODUCTION	1
METHODS	2
SITE DESCRIPTION	2
HYDROLOGY MEASUREMENTS	2
Flow and level	6
Rainfall measurements	7
Data loggers	
WATER QUALITY	
Rainfall	
Stormwater and Base Flow	
SEDIMENT SAMPLES	
Protocol	10
Sediment quality	10
GROSS SOLIDS	
Sampling equipment	
Gross solid quality	
The floating litter	
MACROINVERTEBRATES	
Sampling method	
Invertebrate Sampling	
RESULTS AND DISCUSSION	13
HYDROLOGY	
Rainfall Amounts	13
Rainfall Characteristics	
WATER LEVELS	
STORM FLOWS	
Hydrographs	
Water Budget	
WATER QUĂLITY	
Nitrogen	21
Total nitrogen	
Ammonia nitrogen	
Organic nitrogen	
Nitrate plus nitrite	
Phosphorus	23
Total Suspended Solids	
Metals	
Aluminum	25
Copper	25
Zinc	
Iron	27
Percent Efficiency	27
Dissolved Metals	
FIELD PARAMETERS	
Characteristics	
Daily Fluctuations	
Rainfall Effects	

Summary Data	
GROSS SOLIDS	
Volume Collected	
Chemical Analysis	
Water Quality	
Gross Solids	
Compared to Standards	
Particle Size Analysis	
Comparison of Laboratory Results	
Sieved Samples	
Whole Sample	
Lessons learned	
Constituent Concentrations by Particle Size	
Litter (Trash)	
Decant Water	
SEDIMENT ANALYSIS	
Polycyclic Aromatic Hydrocarbons (PAH)	
Metals and Nutrients	
Pesticides	
Particle Size Analysis	
PAHs in Soil Compared to Gross Solids	
MACROINVERTEBRATES	
CHLOROPHYLL	
COLIFORM BACTERIA	
SUMMARY OF RESULTS	
HYDROLOGY (Appendices B and C)	
STORM FLOWS (Appendix D)	
WATER QUALITY (Appendix E)	
FIELD PARAMETERS (Appendix F)	
GROSS SOLIDS (Appendices G, H and I)	
SEDIMENT ANALYSIS (Appendix J)	
MACROINVERTEBRATES (Appendix K)	
CHLOROPHYLL (Appendix L)	
COLIFORM BACTERIA (Appendix M)	
CONCLUSIONS	
CONCLUDING REMARKS	
REFERENCES	-
INFORMATION FOR METHOD SECTION	
APPENDIX B	
RAINFALL CHARACTERISTICS	
WATER LEVELS	
FLOW DATA	
WATER QUALITY CONCENTRATIONS	
APPENDIX F	
FIELD PARAMETERS	
APPENDIX G	

GROSS SOLIDS CONCENTRATIONS MEASURED IN CDS UNIT	
APPENDIX H	
GROSS SOLIDS: AN UNTESTED METHOD FOR EFFICIENCY CALCU	LATION 263
APPENDIX I	273
GROSS SOLIDS: A SUMMARY PAPER OF RESULTS	
APPENDIX J	
SEDIMENT ANALYSIS	
APPENDIX K	
MACROINVERTEBRATES	
APPENDIX L	
CHLOROPHYLL	
APPENDIX M	
BACTERIA	
PICTURES	

ACKNOWLEDGEMENTS

This project and preparation of this report was funded in part by a Section 319(h) Nonpoint Source Management Program grant from the U.S. Environmental Protection Agency (US EPA) through a contract with the Stormwater/nonpoint Source Management Section of the Florida Department of Environmental Protection (FDEP). The total cost of the project is \$570,934 of which, \$342,560 is being provided by US EPA. An amendment to the contract has provided additional funds (\$40,464) to allow more complete monitoring for polycyclic aromatic hydrocarbons. The US EPA share for additional monitoring is \$24,322. David Worley and Eric Livingston of FDEP are invaluable in providing support and guidance.

Rebecca Hastings and Stan Kane have been indispensable in collecting data, processing the results and keeping the site up and running. In addition, many interns at the Southwest Florida Water Management District (SWFWMD) have helped with all aspects of data collection and processing. Special thanks go to our great laboratory staff and their analysis of the large number of samples that cannot be collected by any pre-determined schedule.

The City of Temple Terrace has been responsible for fixing broken pipes, cleaning out the Continuous Deflective Separation (CDS) unit, skimming trash from the CDS, making measurements and fixing other problems. Their help is greatly appreciated, especially Joe Motta, City Engineer, Woody Garcia, Director of Public Works and Greg Lindsey, site inspector.

Mike Holtkamp of SWFWMD's Surface Water Improvement and Management (SWIM) Section was the principal investigator for the construction phase of the project and helped with the design of the monitoring phase by altering storm flow pipes to insure only one inflow and one outflow and by providing engineering expertise. His continued interest and support is greatly appreciated. Mike Beach of SWFWMD's Hydrologic Evaluation Section provided the formula for the inflow pipe area measurements.

Josie Guillen of SWFWMD did the final editing and conversion to get the report in the correct form to send to the printer.

Many thanks to all of you.

ABSTRACT

A major storm drain pipe was retrofitted with a CDS unit followed by a linear pond to help treat stormwater discharged from an urban drainage basin in Tampa, Florida. The CDS non-blocking screening, swirl concentrating technology design has a capacity to remove sediment and large sized particles such as litter, leaves, twigs, sand and paving residue from storm runoff. Results of this research suggest that it removes these gross solids very well, but it does not remove the dissolved and suspended particles present in the water column. The CDS unit did remove levels of polycyclic aromatic hydrocarbons (PAHs) at concentrations many times higher than levels considered toxic to benthic organisms. Since PAHs do not easily dissolve in water, they are rarely measured in storm water quality studies, but are considered a serious problem in sediments in portions of Tampa Bay. Much more material would have been collected by the CDS unit except street sweeping occurred on a regular schedule in the basin except when there was a problem with the street sweeper.

Wide variations were measured in the constituent concentrations of the material collected by the CDS unit, especially between samples that had been sieved, which showed much higher concentrations than whole samples. Also the same samples when analyzed by different laboratories showed significantly different concentrations. These results indicate standardized methods need to be established for quantifying gross solids.

The water quality data collected in the flow traveling through the CDS unit did not support the idea that the leaves collected by the unit leached nutrients and increased their concentrations in the water downstream, but this result may be influenced because leaching had already occurred while the leaves and water traveled through the storm drain together. If litter and large sized particles are the pollutants of concern in a drainage basin, a CDS unit is a good solution, but if dissolved or suspended particles, especially nutrients, are a problem, a CDS unit will not reduce those pollutants. A CDS unit is probably best suited as the first element in a series of stormwater treatment methods.

The small shallow pond constructed down stream from the CDS unit was monitored to determine if it might provide additional treatment. The pond could not be built according to specifications for a regulation stormwater pond because not enough land was available in this urban area, but it did improve some conditions. It reduced nitrate nitrogen 76 to 93 percent in base flow and about 20 to 60 percent in storm flow. Copper and zinc were reduced by 30 to 60 percent in storm flow. However, ammonia, total suspended solids, organic nitrogen and chlorophyll were greatly increased as water flowed through the pond. This was probably exacerbated by the uprooted plants caused by the storm surges. The pond was effective at reducing the amount of coliform bacteria from dangerously high concentrations measured before and after water passed through the CDS unit to acceptable levels before it left the site.

The pond served as an attractive wildlife amenity in this urban setting and was actively used by wading birds, hawks, and turtles.

INTRODUCTION

Urban development alters the quantity and quality of storm water runoff including changes in the rates, volumes, frequency, physical characteristics and pollutants in the discharge water. These changes have a serious impact on the health of receiving waters. In recognition of these problems governmental agencies in Florida began to regulate surface runoff in new developments in the early 1980s, but older neighborhoods continue to discharge stormwater untreated to our rivers, lakes and estuaries. This was the situation at the Broadway storm sewer, where the 132-acre watershed lacked any proven Best Management Practices such as ponds that would allow suspended contaminants an opportunity to settle out from the water column or for biological processes to take place prior to discharge into the Hillsborough River, the City of Tampa's drinking water reservoir and ultimately Tampa Bay.

The SWFWMD SWIM staff has identified Tampa Bay as the number one water body in need of protection in our area. The mission of the SWIM program is to protect, enhance, and restore water quality and related natural systems. Since 1990, the SWFWMD's SWIM Program has been implementing numerous projects to improve water quality in the Hillsborough River watershed and the Broadway Outfall retrofit is one of these projects

The project was designed to reduce the amount of pollution discharged to the Hillsborough River by installing a CDS unit and a constructed linear pond at a major storm sewer outfall. The CDS technology is designed to remove gross pollutants such as litter, leaves, twigs, sand and pavement residue from storm runoff. According to the company, the device is non-blocking and non-mechanical and is capable of capturing 95 to 100 percent of waterborne litter. In addition, tests have shown that the screen aperture size does not appear to be a critical factor to the performance of the CDS unit and solids, which are smaller than the aperture size of the separation screen, are also captured (Wong et al. 1996). Studies have also shown that the unit is effective for removing oil and greases by 63 to 96 percent when sorbents are added (Stenstrom and Lau 1998).

The Broadway Outfall retrofit project consists of two phases. Construction of the retrofit (Phase I) was completed in November 2001; and the evaluation effort (Phase II), was initiated in November 2002. Monitoring at the site is designed to determine how well the system removes pollutants before they are discharged to the Hillsborough River. Specifically, the project will measure: 1) how much and what kind of gross solids (>75microns) are collected by the CDS unit, 2) the concentration of constituents in the flow stream for the suspended and dissolved particles (< 75 microns), 3) the accumulation of pollutants in the sediments of the pond, 4) the characterization of the macroinvertebrates in the sediments of the pond, and 5) the hydrology of the system including storm flow, base flow and rainfall.

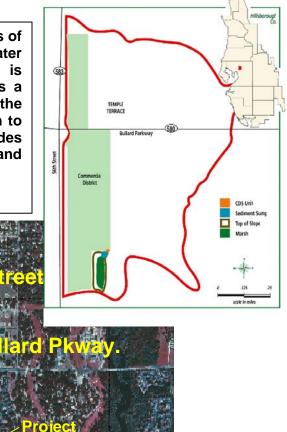
This report contains the results of the monitoring effort (Phase II).

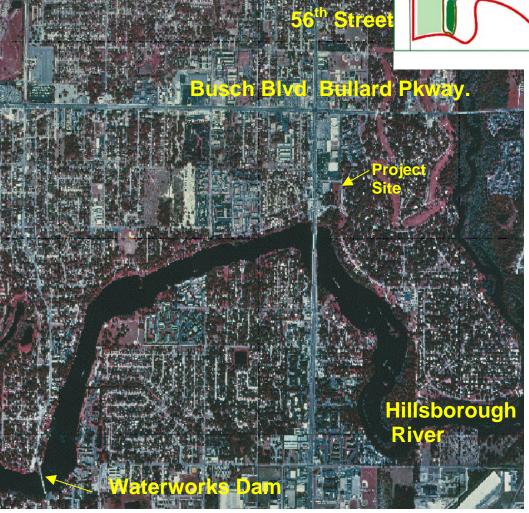
METHODS

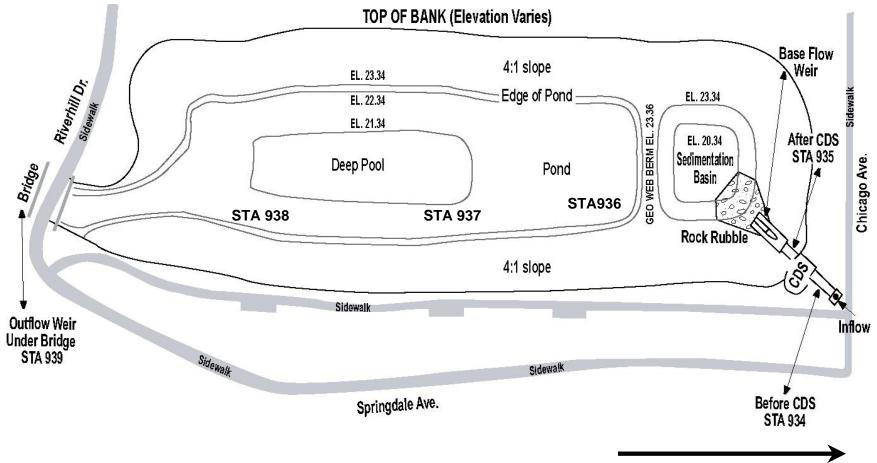
SITE DESCRIPTION

The drainage basin that discharges through the Broadway Outfall storm sewer is approximately 132.4 acres in size and includes a 30.6-acre high intensity commercial district immediately upstream from the site. The remainder of the watershed includes multi-family and residential land uses as well as a golf course and major urban thoroughfares. As part of the Broadway Outfall Stormwater Retrofit Project a Model PSW100 60 (32 cfs capacity) CDS unit was installed in series with an excavated sediment sump followed by a shallow linear marsh system, extending approximately 500 feet downstream from the unit. For the first year of the monitoring project, strong storm surges uprooted the marsh vegetation and created an open water area acting like a shallow pond. A later re-vegetation effort met with the same fate. It was recognized before construction that there was not enough land elevation in the drainage basin to install a CDS unit larger than 32 cfs capacity; and also not enough land area in this highly urbanized basin to build a pond to adequately treat the storm runoff. But it was expected that the installation would improve water quality being discharged to the river. A general location map of the project area and major highways is shown in Figure 1 and Appendix A. A diagram of the study site shows the location of the monitoring stations (Figure 2).

To collect litter, sediment and debris, a CDS unit was installed to reduce the gross solids transported through this urban basin and discharged into the Hillsborough River. Since these large particles degrade aquatic habitat, interfere with drinking-water treatment processes and affect recreational uses, the U.S. Environmental Protection Agency (USEPA 1998) has identified sediment as the most widespread pollutant in the Nation's rivers and streams. A CDS unit is designed to solve the problem of sediment transport by intercepting storm runoff in the conveyance pipe system. An added advantage for built out urban areas is the under ground installation that requires no land area. The mechanism by which the unit separates and retains gross solids is by deflecting the inflow and associated pollutants away from the main flow stream into a pollutant separation and containment chamber. A vertical section view (Figure 3) shows the dimensions of the CDS unit.

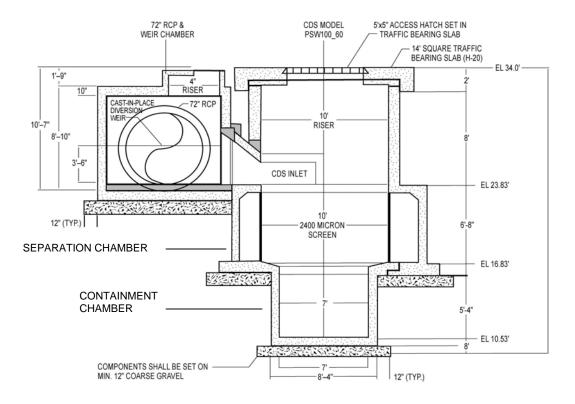

The CDS chamber is cleaned out one to two times a year with a vacuum truck and the gross pollutants are sent to a landfill or disposed of in some other appropriate manner. Gross solids have not usually been measured in storm water studies even though they degrade aquatic habitat, cause visual blight and smother productive sediments. This oversight is attributed to the type of water quality samplers commonly used. These samplers generally exclude solid material including trash, litter, debris and sediments larger than 64 microns. In the past, it has also been assumed that most of the pollutants were associated with the small sized particles that are collected with automatic samplers.


HYDROLOGY MEASUREMENTS


Hydrology was characterized using continuous sensors at three locations in the stormwater system. Flow was calculated from water level measurements, velocity meters and weir structures. Stations were located both in front of the CDS unit and the

bypass diversion weir (location A, sta 934), and after the CDS unit (location B, sta 935) as shown in the plan view in Figure 3.

Figure 1. Project site location includes the names of major streets, the Hillsborough River and the water plant. treatment The drainage basin approximately 132.4 acres in size and includes a 30.6-acre high intensity commercial district (the shaded area in the figure to the left). In addition to the commercial district, the basin includes multi-family, residential, institutional and recreational land uses.



NORTH

Figure 2. The site plan shows the location of sampling stations and sensors. Elevations are national geodetic vertical datum (NGVD) or essentially the elevation above mean sea level. Since sediment samples could not be collect in the pipe (sta 935) or under the bridge (sta 939) sediment and microinvertebrate samples were collected slightly down stream of sta 935 (beyond the rock rubble) and upstream of sta 934.

Vertical Section

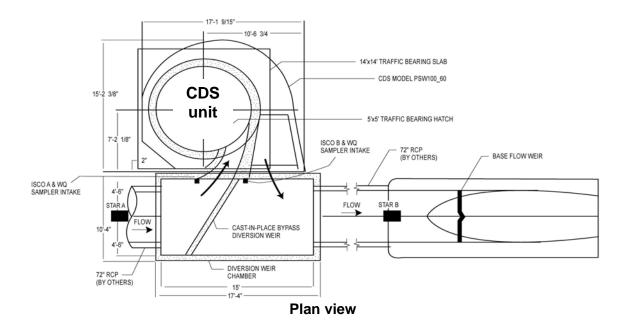


Figure 3. Diagrams of Continuous Deflective Separation (CDS) unit and the associated pipe with diversion by pass weir.

<u>Flow and Level</u> - It was assumed that flow both before and after the CDS unit would be the same since there was no way for water to leave the closed CDS system except over the bypass diversion weir or through the unit. The level at location A was used to measure the water that by-passed the CDS unit when water level was higher than 3.5 feet in the weir chamber. A sensor at location B measured velocity, which was multiplied by the area of the pipe to calculate flow for water levels greater than 0.6 feet. The base flow weir equation was used for levels less than 0.65 feet for both storm and base flow (See figure 3). Flow at the outfall of the pond (sta. 939) was calculated using a three-stage weir structure formula and a water level sensor. Flow and level data were monitored and recorded on a continual basis by electronic CR10[™] data loggers. Diagrams with all the dimensions of the weirs and their formulas are shown in Appendix A.

Almost all methods for calculating flow, including those used in this project, require the most accurate measurement possible for water depth. Small differences in depth measurements create large errors in flow measurements since most of these equations use mathematical functions that increase errors exponentially. Another problem exists because many water level sensors drift over time, become covered in sediment or trash during storm events, or in the case of bubblers have algae growth inside the tubing. For the first 15 months, this project used two different sensors to measure water depth at the inflow: 1) An ISCO[™] bubbler flowmeter (model 4230), and 2) A starflow[™] ultrasonic Doppler velocity meter with SDI output which has a velocity range of 15 fps and level range of 6.6 feet. In order to try to keep errors to a minimum, the study site was visited three times a week during the rainy season and levels were compared to a stationary staff gauge during some site visits. Telephone contact with the site helped identify problems between visits.

After 16 months the original Starflow[™] velocity meter guit working and efforts to repair it were unsuccessful, it was replaced with an old Marsh McBirney[™] meter we had used in previous applications. (Institutional regulations made purchasing a new velocity meter nearly impossible). In addition to adapting the Marsh McBirney, two formulas were developed to estimate flow. A regression equation was used to estimate flow from water level using the good data collected during the first year of the study. This method is described in detail in Appendix A and is referred to in the hydrographs in Appendix D as "REGRESS". A different equation was developed by treating the base flow weir as a rectangular weir during storm flow and multiplying this by the area of the water in the pipe. This equation is also described in more detail in Appendix A and is referred to in the hydrographs as "BF FORMULA". The base flow formula under represented high flows because no adequate method was developed to resolve the area when the length of the weir decreased again after the pipe was more than half full. An equation was used for the area of the pipe when the regression (REGRESS) was used for flow. The Marsh McBirney could never be relied on to produce realistic data; therefore, the final 20 months mainly rely on the two formulas described above for flow measurements during storm events.

Another problem that made flow measurements difficult was caused by discrepancies in water level measured by the two sensors (Isco and Starflow). Although they read almost identical levels during low flow when we could check the results, they did not usually agree during maximum flow when water levels were changing rapidly. Often the ISCO level B meter cut off the top of the hydrograph at high flow. A regression

equation from the first year of good data produced by the Starflow sensor was developed to account for this problem by relating level A before the bypass weir to level B after the bypass weir. Once again, see Appendix A for a more complete discussion.

Recognizing that we had problems with sensors, a monthly water budget was calculated that also included baseflow and the outflow from the pond. A 1 to 3 percent error was noted on a yearly basis for years one and three and a 9 percent error was noted during year two when broken pipes introduced unmeasured flow into or sometimes out of the pond and when several hurricanes passed through the region causing power outages. (Appendices C and D show these results).

<u>Rainfall Measurements</u> - were collected at the site with a tipping bucket rain gauge. The data from the rain gauge are transmitted to a data logger using a pulse counter where each tip of the bucket represents 0.01 inch of rainfall. Rainfall accuracy is affected by wind effects, rain splashing out of the gauge during high-intensity storms, tipping rate of tipping bucket not keeping up with high-intensity rains and calibration errors. To reduce calibration errors, we test the accuracy of the rain gauge by using a graduated cylinder from our laboratory to measure tips by the method listed in the operation manual. The gauge exposure and placement were selected to reduced measurement errors by keeping the gauge low, behind a fence and yet with 45° open space in all direction. A telephone connection to the data logger allows the technician to access real time rainfall and determine the necessity for a site visit.

Rainfall amount, antecedent dry conditions, intensity and duration are calculated from this data using the following formulas:

Rain (in)	rainfall amounts for each event >0.05 inches (6 hours separates storms).
Inter-event dry (hr)	time period since previous rain event
Duration (hr)	period of active rainfall
Intensity (in/hr)	total event rainfall / duration
Max. intensity	a 15-minute period during the storm with the highest maximum intensity (in/15 min)
Runoff coefficient	inflow (ft ³) / rain amount (ft)*basin area (ft ²)

<u>Data Loggers</u> - (Campbell Scientific model CR10[™]) collected and stored information collected by the sensors. Sensor information is scanned every minute and reported at 15-minute intervals for later retrieval. The data were processed in EXCEL[™] spreadsheets where they were organized into tables and figures for reports.

WATER QUALITY

<u>Rainfall</u> - water quality was sampled using An Aerochem Metrictm model 301 precipitation collector. This equipment has a sensor that detects the occurrence of precipitation and activates a motor. The motor removes the lid from the wet collector and transfers it to the dry collector and when the rain stops the cycle is reversed. A small refrigerator mounted under the collector stores the sample until it is picked up, processed and transported to the laboratory. Dry fall is not measured. The rain bucket is washed and rinsed three times with DI water after each rain event and taken to the laboratory and acid washed on a schedule determined by rain events. The tubing from

the rain bucket into the refrigerator is changed about every three months or more often if necessary.

Stormwater and Base Flow – water quality samples were collected on a flowweighted basis at the inflow and outflow of the CDS unit and at the outflow of the pond using automated refrigerated (ISCO 3700) samplers. Since most velocity meters do not measure low flow less than 1 cfs, the flow-weighted samples were actually based on water level. For storm events, the actual number of samples collected depended on rainfall conditions. About once or twice a month base flow constituent concentrations were estimated by taking flow-weighted samples over several days between storm events. For the last 18 months of the three-year study, separate refrigerated samplers were installed to collect base flow. Before that time, they were collected by the same samplers and great care and some guess work had to be used to keep base flow out of storm samples. Even so, the cross-contamination should not be great because samples were collected on a flow-weighted basis so that much more sample was collected at high flows than during base flow. When the laboratory values were below the quantification limit, as often happens with metals, one-half the detection limit was substituted for summary statistics used in figures and tables.

The SWFWMD laboratory performed water quality analysis using methods published in their approved quality assurance plan. Grab samples were taken for some constituents that cannot be collected by automatic samplers. Filtered samples were collected and processed in the field at the same time as the rest of the samples for zinc, lead and copper. Once samples were processed with the appropriate reagents, they were transported to the laboratory on ice where laboratory personnel signed off on the chain of custody form. A summary table for the water quality sample protocol can be found in Table 1.

Measurement	Vol	Glass	Preservation	Holding	Sample	Sample
	ml	Plastic		time	Туре	Event
Nutrients	500	Р	H ₂ SO ₄ pH<2.0	28 days	C, G	S, B, O
Metals	250	Р	HNO₃pH<2.0	6 month	C, G	S, B, O
Suspended solid	1000	Р	None	5 days	C, G	S, B, O
Hardness+	500	Р	None	6 months	C, G	S, B, O
Chlorophyll	1000	Р	None	6 hrs	G	0
Bacteria	300	Р	None	6 hrs	G	0
Macro-	na	Whirl	>10% formalin	8 hrs ice	G	0
invertebrates		packs		>8hrs for		
Organic Carbon	40	G	HCL/H ₂ SO ₄		G	0

Table 1. Summary table explains water quality sample protocol.

Abbreviations: C=composite, G=grab, S=storm event, B=base flow, O=other.

A description of the laboratory methods and detection limits is in Table 2.

Table 2. Description of laboratory analysis for parameters measured in the water column. References refer to sections in Standard Methods (APHA 1992) or (EPA 1983), where more detailed descriptions can be found. When values were below the laboratory detection limit, one-half the detection limit was substituted.

Parameter	Method after May 2003	Det. Limit	Reference
Total Suspended Solids	Total filterable residue dried at $103-105^{\circ}$ C	0.5 mg/l	SM 2540 D
Total and dissolved lead	ICP-OES	0.010 mg/l	EPA 200.7
Total & dissolved copper	ICP-OES	0.003 mg/l	EPA 200.7
Total cadmium	ICP-OES	0.001 mg/l	EPA 200.7
Total and dissolved zinc	ICP-OES	0.002 mg/l	EPA 200.7
Total and dissolved iron	ICP-OES	0.0125 mg/l	EPA 200.7
Ammonia-N	Automated phenate	0.005 mg/l	SM4500 NH3-H
Total nitrogen	Potassium persulfate auto clave	0.03 mg/l	EPA 353.2 SM4500 MC
Nitrate-nitrite-N	Cadmium reduction	0.0025 mg/l	EPA 353.2
Total Phosphorus	Ammonium persulfate auto clave	0.01 mg/l	EPA 365.1
Ortho-phosphorus		0.01 mg/l	SM 4500-P-F
Calcium	ICP-OES	0.25 mg/l	EPA 200.7
Magnesium	ICP-OES	0.25 mg/l	EPA 200.7

QAPP Appendix_AR_TABELS

SEDIMENT SAMPLES

Sediment characteristics were monitored by evaluating samples collected at locations along the treatment path in the pond and in the ditch below the pond. Sediment Samples were collected before construction of the retrofit on May 2, 2001, again at the beginning of the monitoring study in August 2002, and near the end of the study in August 2004. The FDEP laboratory analyzed the sediment samples using methods in their approved QA/QP plan. Samples were collected at four to five sites located within the retrofit site.

<u>Protocol</u> - A sediment corer was used to collect the top five inches of sediment. About five aliquots are taken in close proximity to each other at each sampling location in order to collect enough sediment for sample analysis. The separate aliquots were well mixed using a modified four-corner method and placed in appropriately labeled containers, placed in ice in coolers and mailed over night to the laboratory in Tallahassee. Only stainless steel or glass equipment is used.

<u>Sediment Quality</u> - Samples were analyzed for particle size, total Kjeldahl nitrogen, total phosphorus, total lead, total zinc, total iron, total cadmium, polycyclic hydrocarbons, and pesticides.

Table 3.	Numerical	sediment	quality	assessment	guidelines	for	Florida	Inland
waters (F	DEP 2003).	TEC=Thre	shold Ef	ffect Level, PE	EC=Probable	e Eff	fect Leve	el.

CONSTITUENT	units	possible	probable
Classification* ->		TEC	PEC
METALS			
Cadmium	mg/kg	1.0	5.0
Chromium	mg/kg	43	110
Copper	mg/kg	32	150
Lead	mg/kg	36	130
Nickel	mg/kg	23	49
Zinc	mg/kg	120	460
POLYCYCLIC AROMATIC HYDROCARBONS			
Acenaphthene	ug/kg	6.7	89
Anthracene	ug/kg	57	850
Phenanthrene	ug/kg	200	1200
Benz[a]anthracene	ug/kg	110	1100
Benzo(a)pyrene	ug/kg	150	1500
Chrysene	ug/kg	170	1300
Dibenz[a,h]anthracene	ug/kg	33	140
Fluoranthene	ug/kg	420	2200
Pyrene	ug/kg	200	1500
Total PAHs	ug/kg	1600	23000
PESTICIDES			
Chlordane	ug/kg	3.2	18
DDD	ug/kg	4.9	28
DDE	ug/kg	3.2	31
DDT	ug/kg	4.2	63
Diazinon	ug/kg	0.38	NG

GROSS SOLIDS

The material collected by the CDS unit was analyzed each time the unit was vacuumed out. The unit was installed in December 2002 and the level in the unit is measured each month and cleanout performed when the material is about 5 to 6 feet deep.

<u>Sampling Equipment</u> - includes a vacuum truck for cleaning out the sump, a measuring device that includes a 6-inch disk rigidly fastened to a pole to estimate distance to the solids, and an Ekman dredge for collecting samples at different depths while the unit is being vacuumed out. It was noted that the Ekman dredge often was unable to close completely because leaves became attached to its jaws leaving a slit where some of the material was lost while it was being transferred into the collection bucket.

<u>Gross Solid Quality</u> - Gross solids are the litter, leaves, trash and sediment that are collected by the CDS unit. Based on accumulation and maintenance requirements, clean-out was required once or twice a year. During some sampling events the pollutants were analyzed by particle size and for some events only one to two representative samples were tested using the entire sample. Columbia Analytical Laboratory performed the analyses for: particle size, bulk density, total phosphorus, total Kjeldahl nitrogen, total copper, total lead, total zinc, total nitrogen, organic matter, total organic carbon and Polycyclic Aromatic Hydrocarbons. Considerable variation was noted between clean-out periods and also between analytical methods (whole vs. sieved samples). For the final clean-out, samples were sent to two different labs for comparison. In addition, since the Ekman dredge appeared to lose some sample through the slit while it was being transferred to an adjacent bucket, the final clean-out period included samples taken the next day from the disposal pile. The amount of leaves in the sample kept the Ekman from closing properly.

<u>The Floating Litter</u> - collected by the CDS unit was skimmed off the top about once a month and this is combined with the litter in the gross solids at time of clean-out to quantify the type and dry weight of the trash collected. The material is air dried under cover before being sorted and weighed. A misunderstanding caused some litter to be disposed of without being included for the third cleanout period and no litter was analyzed for the final cleanout period.

MACROINVERTEBRATES

Macroinvertebrates were evaluated by monitoring pre- and post-construction macroinvertebrate samples. The identification of macroinvertebrates is performed by Mote marine Laboratory. They provide a phylogenetic list of taxa with counts for each of the sediment stations and summarize the data with appropriate statistics such as the Shannon, Pielou, Margalef and Simpson metrics

<u>Sampling Method</u> - Macroinvertebrates were collected using the sampling procedure in the Mote Marine (MML) approved quality assurance plan. Samples were collected by SWFWMD technicians and sent to the Mote Marine laboratory for identification and analysis. Sampling kits are ordered from MML. Sampling sites correspond to the same locations as the sediment samples.

Invertebrate Sampling - Benthic macroinvertebrates were collected on four sampling dates and included four sites in the pond.. Samples were collected with a 6-inch by 6-inch Ekman dredge and sieved in the field using a #30 (250 um) standard testing sieve. The organisms retained were placed into 4-liter Nalgene bottles, preserved with 10 percent formalin, and stained with rose Bengal. In the laboratory, organisms were sorted in white enamel pans and identified to genus and species using a variety of taxonomic keys. The Bengal solution is ordered from the SWFWMD lab. The lab prepares the solution using the following procedure: a calibrated syringe measures quantities of 100 percent buffered formalin-rose Bengal solution necessary to bring the contents of each sample jar to 10 percent formalin by volume.

Macroinvertebrate assemblages were evaluated using the Shannon-Weaver diversity Index and the equitability measurement. Diversity indices provide information on the effects of environmental stresses on biological communities, and values calculated for macroinvertebrate assemblages are often used to characterize water or sediment quality (USEPA 1973). The Sannon Weaver Diversity Index is based on information theory and takes into consideration the number of species (or taxa) present and the relative abundance of each species (or taxon). Species diversity can be calculated according to:

$$H = -\Sigma(p_i)(\log_2 p_i)$$

where H = the diversity index s = the observed species i = the species number $p_i =$ proportion of individuals of the total sample belonging to the *i*th species

The Shannon-Weaver Diversity Index has been used to determine diversity in polluted and unpolluted bodies of water. It has been estimated that unpolluted water typically has a diversity index between 3 and 4 and where in polluted water diversity measure is less than 2 in polluted water (Wilhm 1970).

The equitability measurement is used to describe the component of diversity which may be attributed to the "evenness" of the distribution of the total number of individuals among the species (or taxa) present. A measure of equitability, which is calculated as:

 $E' = H/H_M$

where E' = equitability

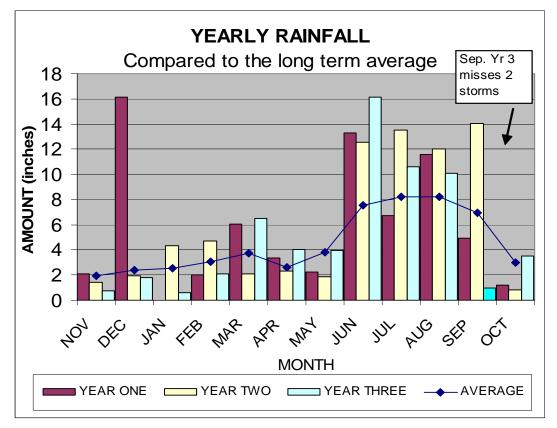
H =the observed species diversity.

 H_M =the maximum species diversity based on the number of species in the sample.

The equitability measurement is more sensitive to pollution than the Shannon-Weaver Diversity measurement (EPA 1973) and usually ranges from 0 to 1. The equitability measurement ranges from 0.6 to 0.8 in unpolluted streams and 0.0 to 0.3 in polluted streams (Odum, 1983).

RESULTS AND DISCUSSION

An urban retrofit for treating stormwater runoff was constructed at the Broadway Outfall storm sewer during the autumn of 2001. It included the installation of a 32 cfs Continuous Deflective Separation (CDS) system in series with a shallow constructed pond, which is used for additional stormwater treatment. In November 2002, an evaluation study was initiated to document the ability of the system to remove pollutants. Below are the results of the three-year data collection effort.


HYDROLOGY

Continuous monitoring sensors at the inflow and outflow of the stormwater retrofit stored rainfall data and water level information in data loggers to use for characterizing the hydrology of the system. Formulas were also developed to verify the data and to estimate hydrology values during periods of equipment failure.

Rainfall Amounts

Florida normally has wet and dry seasons with sixty percent of all rainfall occurring during the four summer months between June and October. The different storm patterns occurring in summer and winter are the result of atmospheric currents from both the tropics and temperate latitudes caused by changes in the global wind belts. Seasonal wind changes bring the Tampa Bay region within the westerlies in winter and the northern margin of the tropical easterlies in summer. The summer rainy season is the result of this changeover. In June the upper flow over the Florida peninsula changes from northwesterly to southerly as a trough moves westward and becomes established in the Gulf of Mexico (Barry and Chorley 1976). This deep moist southerly airflow provides appropriate conditions for convective storms. When this air passes over land, it is heated during the day, lifted aloft and as it rises the water vapor within it condenses, clouds form and convectional storms bring rainfall. These conditions help make Tampa an area of intense thunderstorm activity. Also in summer, some easterly waves from the tropics may intensify and organize into circular motion resulting in tropical storms and hurricanes bringing several days of rain. In the winter the weather is mostly controlled by frontal activity from the North. Since frontal storms rarely make it this far south in the spring and fall, these are usually dry months, especially in the fall (October - November) and spring (April - May). El Nino years can change this typical pattern.

Rainfall was above its normal amount of 52 inches per year during the three years of the study (Figure 4). During year one, no rain fell in January, but a record amount (16.16 inches) fell during December. El Nino conditions also helped increase rainfall for the year. In year two, four hurricanes came through Florida increasing rainfall amounts to levels far above the normal long-term average, while other months most often measured below average rainfall. Year three had the least amount of rainfall, but it was still above the long-term average.

D:\BROADWAY/RAIN

Figure 4. Rain amount (inches) for each month during the study period compared to the long-term average for the region.

Rainfall Characteristics

Accurate monitoring of precipitation intensity and total accumulated precipitation are necessary for planning, design, collection and interpretation of results for stormwater studies. These characteristics are not only relevant to water quantity issues where they affect flooding and peak discharge, but also to water quality impacts where they can affect constituent concentrations and pollutant removal efficiency. Antecedent conditions (inter-event dry period) and rainfall intensity may increase pollutant concentrations by providing time for accumulation on land surfaces as well as the rain energy to flush pollutants through the system.

The summary statistics in Table 4 include data for the three years of data collection and represent most storms greater than 0.05 inches. All of the data for each storm event are in Appendix B. The data only include the active part of the storm and not the trailing 0.01 inch drips that are characteristics of some storms. Also electrical outages during thunderstorms sometimes interrupted data collection. Therefore the results may not reflect the rainfall amounts reported by weather stations that include all storms and all drips or even the amount reported in other parts of this report.

Table 4a. Summary of rainfall characteristics calculated for storms > 0.05 inches from October 2002 through October 2003. (See Appendix B for all of the data).

DATE	Inter-event Dry Period (hours)	Storm Duration (hr.)	Total Even Rain Fall (in)	Avg. Int. (in/hr)	Max. Int (in/15 min)
# observations	93	94	94	94	94
Average	98.42	5.15	0.81	0.19	0.26
Median	45.25	3.88	0.46	0.14	0.21
std.dev.	134.50	5.95	1.01	0.18	0.28
Maximum	896.25	39.75	4.97	1.04	1.84
Minimum	4.75	0.5	0.04	0.005	0.02
TOTAL RAIN			75.9		

Table 4b. Summary of rainfall characteristics calculated for storms > 0.05 inchesfrom October 2003 through October 2004. (See Appendix B for all of the data).

	Inter-Event	Storm	Total Event	Average	Maximum
YEAR TWO	Dry Period	Duration	Rain Fall	Intensity	Intensity
	(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
# observations	74	74	74	74	74
Average	103.10	6.66	0.98	0.20	0.28
Median	43.00	5.25	0.51	0.12	0.22
std. Dev.	165.67	7.63	1.24	0.21	0.23
Maximum	835.50	40.75	8.05	1.05	0.91
Minimum	6.25	0.50	0.05	0.01	0.01
TOTAL RAIN			72.51		

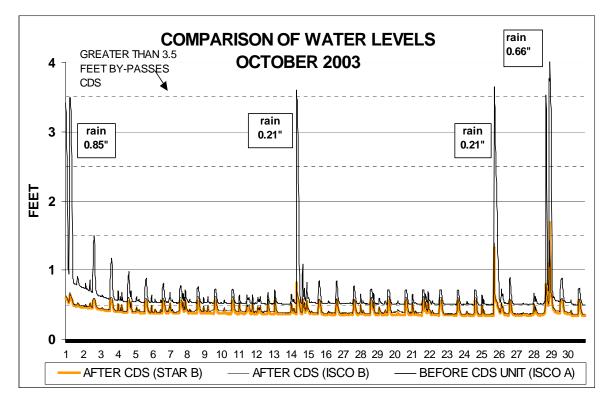
Table 4c. Summary of rainfall characteristics calculated for storms > 0.05 inches from October 2004 through October 2005. (See Appendix B for all of the data).

YEAR THREE		Inter-Event	Storm	Total Event	Average	Maximum
		Dry Period	Duration	Rain Fall	Intensity	Intensity
		(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
# observations		81	81	81	81	81
Average		111.32	5.69	0.72	0.19	0.29
Median		51.75	3.75	0.51	0.10	0.19
std. Dev.		195.32	5.97	0.65	0.23	0.28
Maximum		1424.75	32.00	2.70	1.08	1.15
Minimum		6.00	0.50	0.03	0.01	0.02
TOTAL RAIN	N			58.38		

Table 4 reveals that the rainfall characteristics for the three years show similar patterns. The large differences seen between the average and median values indicate the lognormal distribution of storm events with a few large storms skewing the average results. It should be noted that during the summer of year two, three hurricanes swept through the region increasing average rainfall amount and storm duration, but not median rainfall values. The differences seen in the amount of time between storm events appear to be the result of the amount of rainfall recorded. There was essentially no difference between average storm intensity between years.

Storm intensity, depth, duration and frequency may affect stormwater quality, but research results are mixed about their impact. Some researchers have found no correlation between the length of the dry antecedent period, but have found that the more intense storms carried a greater loading than less intense events of the same volume (Minton 2005). Flow velocities have been found to increase the amount and size of sediment removed from the pavement and this should have an affect on the material collected by the CDS unit in this study. The type of runoff collection system in the drainage basin also affects the type of runoff. Sheet flow exhibits lower velocities than gutter flow for the same flow amount and curbed roads produce even higher velocities (Minton 2005). Underground pipes probably have the same effect. In the large drainage basin served by the Broadway Outfall, all these factors are at work, but the fluctuations in pollutant concentrations during a storm are moderated by the large longitudinal dispersion in the drainage system.

The size of the storm also affects pollutant concentrations as described for an area in Milwaukee (Burton and Pitt 2002). Small rains (less than 0.5-in) represent the vast majority of rain events that occur and probably represent the majority of violations associated with wet-weather flows. Medium-sized storms (0.5-in to several inches) contribute the majority of runoff volume and mass pollutant discharges and probably the most adverse biological effects in receiving waters. The largest rains are the primary focus of drainage designs and must also be accounted for.


WATER LEVELS

To evaluate hydrology in stormwater studies accurately, one of the most crucial measurements is measuring the height of the water level correctly where the sensors are located. Since flow measurements are calculated from weir structures by using complicated formulas, which often include two and three part weir structures, errors are increased exponentially and can differ by orders of magnitude from level measurement that differ by as little as 0.04 feet. Accurate flow measurements are especially critical since the data are used in the calculation for constituent loads, which in turn estimate the efficiency of the stormwater system to remove pollution.

Water level data are also helpful in identifying activities in the watershed, comparing instruments, and determining the overall responses of the system. Since water level is such a crucial parameter for correctly analyzing how storm water systems work, considerable effort was spent inspecting this data. As an added precaution, two level sensors were used to evaluate water levels in front of the CDS unit, after the CDS unit and at the outflow of the pond. This was fortunate because problems were frequently encountered and some sensors failed entirely. Therefore, relationships had to be established using regression formulas and other equations to estimate flow for the

final 16 months of this three-year study (Appendix A). Sensors were located in the storm sewer system near the inflow to the CDS unit and after the outflow in a six foot diameter pipe (see Figure 3b). A small 5-inch high V-notch weir was installed in the outflow 6-foot pipe to measure flows less than 1 cfs, which are not accurately measured with velocity meters. (Appendix A).

The water levels are compared for each month in Appendix C and an example is show in Figure 5.

Figure 5. Water levels measured in front of the CDS unit (top line) and water levels after the CDS unit compared with two separate instruments. The amount of rainfall is also indicated.

Information gleaned from the water level graph (Figure 5) indicate that even for rain amounts as small as 0.21 inches, some of the storm flow bypasses the CDS unit. Also, for larger storms, water is held back to be treated later as shown for the higher levels measured in front of the CDS unit (ISCO A) at the end of large storm events. It also indicates that there is close agreement for the two level sensors located after the CDS unit. The ISCO measures levels about 0.025 feet higher, when compared to the STAR sensor. In addition, water levels are only moderately higher before the CDS unit than after the unit, indicating that even the base flow between storms is passing through the unit. When the CDS unit became clogged, one of the first indications was a much higher water level held back by the diversion weir. Of some interest is the increase in flow every afternoon when there is no rain. It was thought this might be caused by evapotranspiration, but an analysis of the data when compared to pond level showed this was not the case. Greater than 25 percent of all base flow is attributed to this daily pulse of water. Except when obscured by rain events, it occurs for about three to four hours between 14:00 and 17:30 each day. The graphs in Appendix C also indicate that after July 2004, differences occurred in the measured water levels compared to measurements before that time. Field comparisons located errors for both flows and these were corrected in calculations, but have not been corrected in the figures in Appendix C. Level A was recording on average 0. 24 ft too high and level B was 0.17 ft too low (see Appendix A). This indicates the importance of testing frequently for sensor drift and sensor problems.

STORM FLOWS

Water levels were used to calculate hydrographs for each storm and to construct water budgets for each year (Appendix D).

Hydrographs

Hydrographs were constructed for almost all flows for storms greater than 0.10 inches and include rain amounts, inflow from two different sensors, flow over the by-pass diversion weir, and outflow. The formulas used to convert water level to flow are shown in Appendix A. The hydrographs were useful for analyzing some characteristics of the system. In the Broadway Outfall drainage basin, flow occurs almost immediately after the first raindrop hits the ground indicating the efficiency of the underground pipe collection system to rapidly remove runoff from the drainage basin. Storm runoff is defined as the amount of precipitation that exceeds the infiltration capacity and depression storage in the drainage basin and the rapid rise and fall of the hydrographs again indicate the efficiency of the storm conveyance system and not much depression storage. In addition, storm events with as little as 0.06 inches of rain produced a measurable increase in flow of 2 to 3 cubic feet per second, and as little as 0.20 inches can produce peak flows of 10 to 12 cubic feet per second. The outflow usually starts discharging about thirty minutes to an hour after the peak flow at the inflow depending on how much storage capacity is available in the pond and the hydrographs demonstrate the capacity of even this small pond to moderate peak flows and slow the release rate to receiving waters.

Each flow meter often measured different peak flows and this resulted in somewhat different flow amounts. Peak flows for larger rain events are usually greater when measured by the STAR flow meter while smaller rain events often exhibit higher peaks when measured with the ISCO flow meter. The ISCO sensor under-estimated most storm flows after June 2003, and eventually a regression equation was developed to correct for this problem. Averages of the two flows were used in the summary calculations unless one was an obvious error. The results from both meters are shown on the hydrographs in Appendix D and an example is shown in Figure 6. Figure 6 also shows a comparison of flow meters with the various formulas and regression equations that had to be developed when equipment failed. During the summer of 2004, the STAR flow meter guit recording at all and an old Marsh McBirney meter was adapted to measure velocity at the site. It measured flow with mixed results and finally quit entirely. For the final 18 months of the study the two equations developed to measure flow from water level measurements estimated the flow. These formulas were compared in the hydrographs to flow measurements when the site was fully instrumented and gave comparable results. All of these adaptations are shown and explained in Appendix A.

Water Budget

To test the accuracy of flow measurements further, a water budget was developed for each month and these data are summarize by year in Table 5 and all the monthly data are located at the beginning of each year's hydrographs in Appendix D. Problems with debris and large snails plugging the weir structures caused problems with flow measurements. The debris was especially heavy at the outflow during September and October of 2003 when most of the marsh plants were uprooted causing water levels to be held artificially high. Since flow is calculated from level, the flow rates were also high as shown in the error column. A leak in the outflow weir during 2004 resulted in considerable unmeasured outflow. This problem probably affected base flow more than storm events because storm events have enough force to clean out weir structures and also overcome leaks and other constraints placed on accurate weir flow calculations. In general the numbers seem reasonable considering that not all parameters for the weir equations could be met and also the inherent variability displayed by measuring devices as described above (see Appendix A and D for more detail). Even though measurements were difficult, a realistic estimate of about ten to thirteen million cubic feet of flow was calculated for both the inflow and outflow during each year of study.



Figure 6. Comparison of flows measured by two different sensors (ISCO and STAR) as well as two equations that were developed to measure inflow from water levels (BF FORMULA and REGRESS)

The Water budget equation (flow in – flow out = change in storage) was used to calculate the water budgets. The terms for each of the elements include these parameters: 1) Rain is the amount of rain that fell directly on the pond, 2) base flow is the flow measured between rain events, 3) storm flow is the flow measured during rain events, 4) ET is the estimated amount of evapotranspiration lost from the pond, 5)

storage is the amount of water stored or lost from the beginning of the month to the end of the month in the pond and 5) is the error term. The large error terms for September and October of 2003 were caused by grass, leaf litter and other debris caught in the weir at the outflow, holding water levels artificially high. Broken pipes allowing unmeasured flow into the pond caused the large error term in 2003-04. Most of the problems were fixed by year 2004-05. Even with these problems, the error term was small when compared to total inflows and outflows for each year: 2 percent in 2002-2003, 9 percent in 2003-2004, and less than 1 percent in 2004-2005.

			INFLOW		storm*		OUTFLOW			
YEAR	RAIN	RAIN	BASE	STORM	BY-PASS	BASE	STORM	ET	STORAGE	ERROR
			FLOW	FLOW	FLOW	FLOW	FLOW	estimate	loss or gai	n
	inches	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft
2002-03	69.50	207,159	2,388,980	8,273,987	2,849,663	4,013,346	6,868,482	161,875	57,417	-230,994
2003-04	71.53	277,805	1,909,445	11,209,379	6,335,886	3,568,093	8,568,844	171,273	9,787	1,078,631
2004-05	61.11	237,336	2,234,714	9,102,286	4,168,377	4,268,626	7,036,884	171,273	44,228	53,324

Table 5. Water budget calculations for each of the three years of data collection

* Bypass flow is already included in storm flow

A quick assessment of the data shown in the water budget in Table 5 calculated runoff coefficients for the 132-acre drainage basin for the three years of data collection as 0.25 for year one, 0.33 for year 2 and 0.31 for year three. The storm discharge estimated by the runoff coefficients at between 25 and 33 percent on a yearly basis is slightly low compared to the 30 percent runoff estimated for urban areas in Florida that range from 35 to 50 percent impervious (Livingston and McCarron 1990). The fact that more water was discharged as base flow at the outflow than at the inflow was caused by truncating the storm events so that the time period would coincide with the inflow hydrograph. This also accounts for the fact that more storm water flowed into the pond than flowed out and more base flow was measured leaving the pond than came into the pond. For most years almost half the stormwater bypassed the CDS unit on a yearly basis: 34 percent for year one, 57 percent for year two and 46 percent for year three. It should be noted that a larger unit was recommended for the area, but that the land was too flat to accommodate this recommendation without causing flooding upstream.

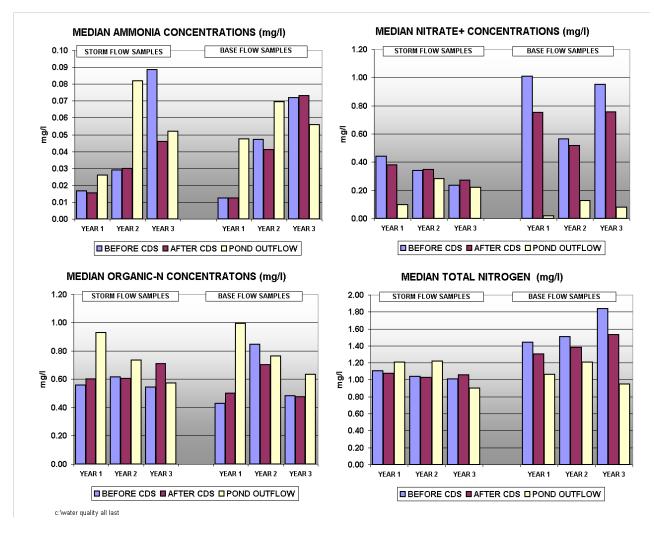
WATER QUALITY

The Broadway Outfall research site was instrumented to evaluate whether the CDS unit and small pond were successful in reducing suspended or dissolved pollutants in the water column. Water column concentrations are usually the only pollutants evaluated in most stormwater studies that use automatic samplers. Although the CDS unit sized for this monitoring site was not designed to remove these small size particles (<75 microns), these water column pollutants were evaluated for comparison purposes and also to understand some of the processes taking place in the system.

As was discussed in the hydrology section, the Broadway outfall responds almost immediately to even small rain events and the CDS unit does not retain water long enough to allow much time for treatment. This is a common problem experienced in treating storm water runoff in most established urban areas. Although water quality improvement in the system was often minimal, it did exhibit interesting trends for some constituents. The flow-weighted water quality samples collected using automated samplers are discussed in this section (see figures 2 and 3 for the exact location). For the analysis, median values were often used since water quality is seldom normally distributed and medians are often a better representation than averages since it reduces false impressions caused by outliers. All of the water quality data can be found in Appendix E along with summary tables and the data are summarized in this section (Figures 7-10).

Nitrogen

Most of the nitrogen species exhibit only small differences between the inflow and the outflow of the CDS unit, although there is often a large difference after water has traveled through the pond (Figure 7). A factor which might affect the nitrogen patterns is the material collected by the CDS unit which consists of 55 to 80 percent leaf material. Some studies have shown leaf litter exudes nutrients when left to rot in water. This does not seem to be a process in this system since there is usually even a slight reduction in nitrogen in both storm flow and base flow traveling through the CDS unit.


<u>Total Nitrogen</u> - usually shows a small though insignificant decrease in concentration as it travels through the CDS unit. The base flow measured both in front of and exiting the unit between storm events has somewhat higher concentrations than storm flow probably caused by the high nitrate levels in base flow. The averaged concentrations measured for total nitrogen for all years is: 1.14 mg/l in storm flow and 1.71 mg/l in base flow. These concentrations are somewhat lower than averaged total nitrogen levels published for central and south Florida land uses of: 2.00 mg/l for single-family residential, 2.32 mg/l for multi-family, 1.23 mg/l for low intensity commercial and 2.40 mg/l for high intensity commercial (Harper 2006). These are all land uses found in this 132-acre drainage basin. Even though total nitrogen concentrations were lower than measured in other Florida stormwater studies it was still higher than recommended for Florida by the Environmental Protection Agency. For both storm flow and base flow conditions, total nitrogen did not meet the recommendation for rivers and streams of 0.90 mg/L, but was only slightly higher at 1.1 mg/L (EPA 2000).

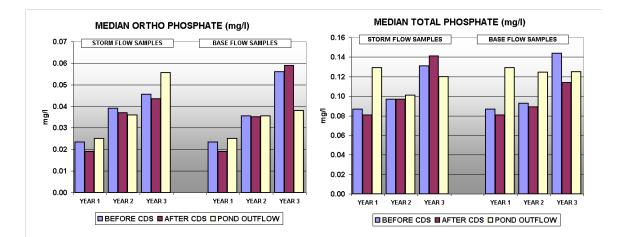
Nitrogen is transformed in a complex cycle, which includes oxidation-reduction reactions, assimilation by plants and organisms, diffusion into the atmosphere, precipitation into larger particles and other processes. These processes are strongly influenced by pH, dissolved oxygen, and temperature, which will be discussed in a later section. Since various nitrogen species exhibit quite different responses in the Broadway Outfall storm water system, these are discussed separately.

<u>Ammonia Nitrogen</u> - was the most variable of the nitrogen species tested and tended to increase in concentration as it traveled through the pond and appeared to double in concentration in each succeeding year. To try to better understand these patterns, the role of ammonia in the nitrogen cycle was investigated. Ammonia nitrogen is important in surface waters for three reasons (Kadlec and Knight 1996): 1) ammonia is the preferred nutrient form of nitrogen for most wetland plant species and for autotrophic bacteria species; 2) ammonia is chemically reduced and therefore can be readily oxidized in natural waters, resulting in significant oxygen consumption; and 3) un-ionized ammonia is toxic to many forms of aquatic life at low concentrations.

Since under the mostly aerobic conditions measured in the pond, ammonia should be rapidly oxidized to nitrate, it is surprising that ammonia is increased as water

travels through the pond while nitrate is greatly reduced, especially during base flow between storm events. Ammonification proceeds more slowly under anaerobic than it does under aerobic conditions because of the reduced efficiency of heterotrophic decomposition in anaerobic environments. In addition, ammonia nitrogen is more likely to accumulate in anaerobic systems because of decreased nitrification rates. But in this pond ammonia increases and nitrate + nitrite greatly decreases and this pattern might be explained by the organic nitrogen.

Figure 7. Median nitrogen water quality concentrations compared between years, between stations, and between storm flow and base flow samples


<u>Organic Nitrogen</u> - concentrations usually increased in the pond for both base flow and storm flow. One explanation for the increase of both organic nitrogen and ammonia may be the vegetation that was planted and subsequently uprooted by strong storm surges. In addition, grass clippings and other organic debris were introduced into the pond each time the side bank was mowed. Ammonification is the biological transformation of organic nitrogen to ammonia and is the first step in mineralization of organic nitrogen (Reddy and Patrick 1984). High loads of organic nitrogen can be readily converted to ammonia, emphasizing the importance of including enough treatment capacity to oxidize all of this reduced nitrogen. It has been documented that organic nitrogen decreases as contact time in wetlands increases, although small concentrations of organic nitrogen still persist (Kadlec and Knight (1996). Kinetically, ammonification proceeds more rapidly than nitrification, thus creating the potential for increasing ammonia concentrations along the flow path of a wetland and requiring design for nitrogen removal to be based on the slower nitrification process (Kadlec and Knight 1996). Our other studies have also shown poor reduction of ammonia and organic nitrogen concentrations in stormwater ponds, usually about a 40 percent reduction (Rushton 2002, Rushton et al. 1997), but this is the first time an increase has been measured. The additional local input of organic matter caused by maintenance practices could explain these results. It also emphasizes the need for a well understood and followed pond maintenance plan. One explanation for the steady decline in organic nitrogen discharged from the pond over the years may be that most of the planted vegetation was uprooted during the first year of the study. It should be noted that a much larger pond was desired for this site, but there was not enough land available, and it was believed that even this small pond would provide a water quality benefit (which it does).

Nitrate Plus Nitrite - will be discussed primarily as nitrate since nitrite is chemically unstable and is generally found at very low concentrations. Nitrate showed a modest reduction in the CDS unit during storm events, and a much better reduction in These nitrate concentrations were much higher than we have usually the pond. measured in our other studies (Rushton 2002, Rushton et al. 1997) and may be the result of the golf course and upscale landscaping in the drainage basin. Although uptake of nitrate nitrogen by living plants is thought to be less important than ammonium nitrogen, it is still a transport route (Kadlec and Knight 1996). The Environmental Protection Agency (EPA) has identified nitrate as an essential nutrient for plant growth that can lead to eutrophic conditions and has set standards for our region. For rivers and streams, the ambient water quality criteria recommended for nitrate + nitrite is 0.02 mg/L (EPA 2000) and the median discharge water from the Broadway Outfall, although greatly reduced in the pond especially during base flow, failed to meet that criterion (0.20 mg/L for storms and 0.07 mg/l during base flow). Nitrate reduction is still a concern since, it is highly soluble and may be infiltrating into the groundwater thus still polluting the river even though it was greatly reduced in the pond.

Phosphorus

Phosphorus removal is difficult in any water treatment technology, but removal can be improved with pond design optimization. In built-up urban areas such as the Broadway Outfall, enough space to build effective systems is a major impediment. It is encouraging that the CDS unit was able to reduce phosphorus at all, and orthophosphorus, the most available chemical form was slightly reduced during most years (Figure 8 and Appendix E). Phosphorus was a significant constituent measured in the gross solids removed from the CDS unit as will be discussed later, especially concentrated in the leaf litter and this may account for the reduction of phosphorus in the water column.

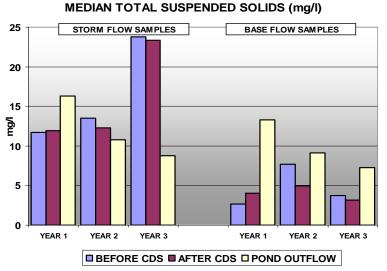
Even though wetlands are often effective in removing phosphorus, there was most often a net increase in phosphorus concentrations after it flowed from the CDS unit through the pond. Wetlands provide an environment for the inter-conversion of all forms of phosphorus. Soluble reactive phosphorus is taken up by plants and converted to tissue phosphorous or may become sorbed to soils and sediments. The soil particles may be only weakly sorbed, however, and may subsequently desorb, especially under anaerobic conditions. In addition, the soil's capacity to sorb phosphorus is quickly exhausted as attachment sites become occupied. Also plant uptake is not a permanent storage and most of the stored phosphorus is returned to the water by decomposition processes. The trend for phosphorus concentrations to increase in each succeeding year may be the result of these processes, since newly constructed ponds with newly exposed soils often do exhibit better phosphate removal.

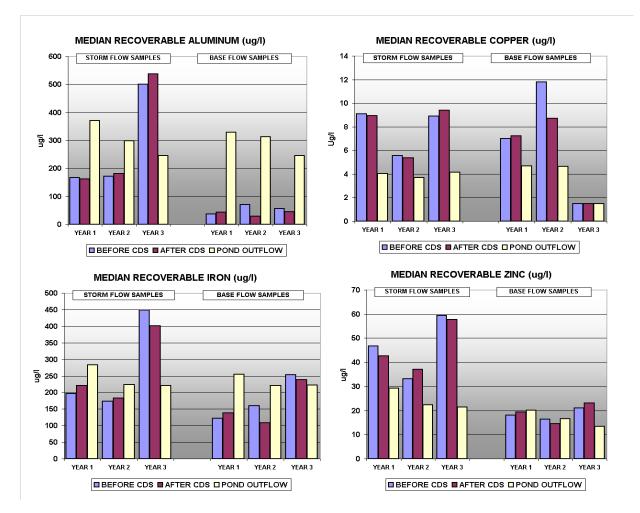
Figure 8. Phosphorus concentrations measured in front of the CDS unit at the discharge point of the CDS unit and at the outflow of the pond for both storm and base flow

Total Suspended Solids (TSS)

A CDS unit is designed to remove particles, but not the small sized particles sampled by automatic water quality samplers for TSS. As will be seen in the gross solids section, only a small amount of particle sizes less than 75 microns were collected in the CDS unit and only an insignificant change for this size particle was accomplished by the CDS unit. Although these results may be surprising to some, the TSS concentrations are not high in this drainage basin for an urban area (Figure 9); and low initial concentrations are extremely difficult to reduce further. In treatment wetlands for waste water, it has been found that the wetland removes about 75 percent of the incoming TSS, provided incoming TSS > 20 mg/L (Kadlec and Knight 1996). In this study, the much higher TSS measured during storms in the third year (average 35 mg/l) are effectively reduced by the pond., but the lower concentrations (14 mg/l) measured in earlier years were not reduced. It should also be noted that, although there are no water quality standards for stormwater, a well-run sewage treatment plant is allowed to discharge water with TSS of 20 mg/L (Randall et al. 1982). The 20 mg/l average storm TSS at the inflow and 14 mg/l average at the outflow suggest much lower values than measured for other Florida studies with the same land uses (Harper 1994). These concentrations (Harper 2006) were also averaged values measured in mg/l: single-family 33.0, multi-family 77.8, low- intensity commercial 59.2, and high-intensity commercial 69.7.

In analyzing the results, we expected the force of the water caused by high velocities during storm events to cause the physical re-suspension of particles in the CDS unit as well as in the pond, and this effect might be exacerbated because of the high length to width ratio of the pond, but an increase in TSS during storm events was not usually seen. The TSS increase in the pond during base flow can be attributed to invertebrate, plankton, macrophyte and periphyton litterfall A large number of wading birds also stirred up the sediments with their feeding habits. There appears to be a gradual decrease in TSS discharged from the pond in each succeeding year.




Figure 9. Water Column Total Suspended Solids (TSS) concentrations measured in front of the CDS, after discharge from the CDS unit and at the outflow of the pond for both storm flow and base flow.

Metals

In general, metal concentrations are much lower in base flow than in storm flow and concentrations are measured over twice as high during the third year in storm flow (Figure 10). The exception is copper. Lead is not discussed since almost all concentrations were below the laboratory limit of detection.

<u>Aluminum</u> - concentrations were much higher during storm flows than base flow and concentrations increased to over twice as much at the outflow of the pond. The primary source of total aluminum is often lake sediment (Sprenger and McIntosh 1989) and this is likely the explanation for this pattern. Unlike some of the other metals, aluminum is not involved in oxidation-reduction reactions, and concentrations in sediments are not directly affected by the presence of aerobic or anaerobic conditions (Kadlec and Knight 1996). There are no fresh water quality standards for aluminum, but all of the concentrations were well below the 1,500 ug/L standard for marine water.

<u>Copper</u> - The CDS unit did not increase or decrease copper concentrations, but copper exhibited significant reduction in the pond. Copper was also reduced during base flow until the final year when the samples at all stations were below the laboratory detection limit. It was reported in the hydrology section that there was a pulse of water every afternoon from about 2:00 to 5:00 o'clock that accounted for about 25 percent of the total base flow during the early years of the study. This pulse was much reduced by the final year and this may account for the much lower levels of copper during year three. It should be emphasized that the concentrations for copper were quite low during all years. Metals did not appear to be a problem at this site and only a few samples failed to meet water quality standards.

Figure 10. Median water Column metal concentrations measured in front of the CDS unit, after discharge from the CDS unit and at the outflow of the pond for both storm flow and base flow.

Zinc - Much higher concentrations of zinc are measured in storm flow than base flow and the pond is effective at removing these higher concentrations by more than half. There were no significant differences between concentrations of zinc as water passed through the CDS unit, the same pattern as seen for most of the other pollutants of concern. Even with the higher concentrations of zinc in storm flow, these levels are still far below what is considered harmful to wildlife. When the averaged concentrations for zinc at the Broadway Outfall (0.03 mg/l) are compared to average values for other site in Florida with comparable land uses (Harper 2006), they are less than single-family and multi-family land uses (0.057 to 0.086 mg/l) and considerable lower than other Florida sites for commercial land uses (0.083 to 0.160 mg/l).

The failure of the CDS unit to remove metal concentrations in the water column is a surprise, since conditions in the unit seemed to favor incorporation in the sediments. For example, Wilber and Hunter (1980) found that heavy metals precipitate out of solutions and adsorb onto clay particles or become bound into various oxides of iron, aluminum, and manganese with a neutral pH and some alkalinity. Other researchers (Gambrell and Patrick 1977) have also found reduction of metal concentrations in conditions similar to those found in the CDS unit, which include reduced conditions and large amounts of organic matter. DePinto et al. (1980) reported that organics increase the capacity of stream sediments to sorb heavy metal ions and provide an efficient sink for heavy metals. These conditions were probably more effective in the pond, which may explain the reduction of copper and zinc as it flowed down-stream after leaving the CDS unit. The water that flows through the CDS unit probably does not mix with the water in the unit and instead is rapidly discharged downstream with no time for many transformations to take place, or else had already taken place upstream.

<u>Iron</u> - exhibits a pattern similar to that for aluminum (i.e. higher concentrations in storm flow and at the outfall of the pond). Iron is important in surface waters because it often control the concentration of other elements, including toxic heavy metals (Moore 1991). The relationship of metals with iron has frequently been demonstrated in our other stormwater studies with correlation coefficients greater than 0.50 (Rushton 2002, Rushton *et al.* 1997). In addition, iron is also strongly associated with suspended solids and phosphorus and probably explains some of the patterns of those constituents found in the water column data at the Broadway Outfall study site.

One of the processes that may affect iron concentrations is the oxidationreduction cycle. When an oxidized layer forms on pond sediment surfaces, it provides an efficient trap for iron and manganese as well as for phosphate. Phosphorus is adsorbed on and complexed with ferric oxides and hydroxide, thereby greatly reducing transport of materials into the water column while scavenging materials such as phosphate from the water (Wetzel 1975). The dissolved oxygen levels to be discussed later provide some insight into processes in the pond. Other conditions that may explain iron concentrations are dissolved or colloidal organic matter (Wetzel 1975). Iron concentrations are not a water quality problem at this site and none of the concentrations were even close to the fresh water quality standard (1,000 ug/L), the upper level considered safe for recreation, propagation and maintenance of a healthy, well-balanced population of fish and wildlife.

Percent Efficiency

Another method to evaluate the concentrations of pollutants in stormwater studies is to look at how much is removed (or increased). The percent efficiency (the ability of the CDS or the pond to remove pollutants) was calculated using both yearly average and median concentrations (Table 6 and Appendix E). A much better method to measure efficiency is to calculate individual loads for each storm event and then calculate a mass efficiency, but the problems with the flow measurements in year two would have skewed this data and for this flashy system with both storm flow and base flow almost equal, concentration efficiency seemed to give comparable results for understanding the system. Also the fact that the flow in the CDS was the same for both the inflow and outflow of the CDS unit and the outflow measured discharge similar to the inflow indicated that a reasonable estimate could be made using the yearly concentration data. The median efficiency is shown as well as the average efficiency because the water quality data are log normally distributed and contain outliers, therefore the median concentrations are often a better predictor of normal concentrations. Calculations using mass loading would have given greater weight to large storms and less weight to small storms, but since a large number of storm events were sampled, this should even out the results. Base flow efficiency is also given. It was recognized early on that the pond would not be large enough to provide much pollution removal, but it was hoped that it would be able to reduce more pollutants than the urban ditch. A larger pond could not be built because of land costs in this highly urbanized area.

C	oncent	ration	Efficie	ncy for	Storm	Events	Using	Avera	ges	
STORM	AMM	ONIA	NITR	ATE +	ORGA	NIC-N	тот	AL N	ORT	HO-P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	22%	-170%	16%	65%	-27%	-51%	-7%	-16%	20%	-25%
YEAR TWO	-11%	-55%	0%	25%	-7%	-13%	-5%	-2%	-16%	46%
YEAR THREE	24%	12%	-12%	22%	-12%	16%	-9%	17%	32%	-12%
	TS	SS	COP	PER	ZI	NC	IR	ON	тот	AL P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	7%	-29%	-16%	55%	-5%	43%	-7%	-17%	2%	-36%
YEAR TWO	-5%	3%	3%	32%	-5%	34%	-6%	-30%	-10%	21%
YEAR THREE	8%	63%	-13%	57%	-8%	63%	7%	47%	3%	20%
BASE	AMM	ONIA	NITR	ATE +	ORGA	NIC-N	тот	AL N	ORT	HO-P
								1		I
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	CDS -70%	POND -2%	CDS 22%	POND 93%	CDS -15%	POND -79%	CDS 8%	POND 8%	CDS 27%	POND -72%
		-		-		-		-		
YEAR ONE	-70%	-2%	22%	93%	-15%	-79%	8%	8%	27%	-72%
YEAR ONE YEAR TWO	-70% -8%	-2% -55% 5%	22% -33% 4%	93% 79%	-15% 59% 19%	-79% -83%	8% 20% 13%	8% 27%	27% 3% -7%	-72% -13%
YEAR ONE YEAR TWO	-70% -8% 19%	-2% -55% 5%	22% -33% 4%	93% 79% 78%	-15% 59% 19%	-79% -83% -16%	8% 20% 13%	8% 27% 41%	27% 3% -7%	-72% -13% 32%
YEAR ONE YEAR TWO	-70% -8% 19% TS	-2% -55% 5%	22% -33% 4% COP	93% 79% 78% PER	-15% 59% 19% ZI	-79% -83% -16% NC	8% 20% 13%	8% 27% 41% ON	27% 3% -7% TOT	-72% -13% 32% AL P
YEAR ONE YEAR TWO YEAR THREE	-70% -8% 19% TS CDS	-2% -55% 5% SS POND	22% -33% 4% COP CDS	93% 79% 78% PER POND	-15% 59% 19% ZIM CDS	-79% -83% -16% NC POND	8% 20% 13% IR CDS	8% 27% 41% ON POND	27% 3% -7% TOT CDS	-72% -13% 32% AL P POND

Table 6. The efficiency of the CDS unit and the pond for removing pollutants. Negative percentages indicate an increase not a reduction in concentration.

(Concen	tration	Efficie	ency for	Storm	Events	s Using	g Media	ans	
STORM	AMM	ONIA	NITR	ATE +	ORGA	NIC-N	тот	AL N	ORT	HO-P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	6%	-65%	14%	74%	-8%	-54%	3%	-10%	19%	-32%
YEAR TWO	3%	-173%	-2%	19%	2%	-21%	1%	-18%	5%	3%
YEAR THREE	48%	-13%	-16%	19%	-31%	19%	-5%	15%	4%	-28%
	TS	SS	COF	PER	ZI	NC	IR	ON	тот	AL P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	3%	-35%	2%	55%	5%	32%	-14%	-19%	7%	-47%
YEAR TWO	9%	12%	3%	31%	-11%	40%	-6%	-22%	0%	-4%
YEAR THREE	2%	62%	-6%	56%	3%	63%	11%	45%	-8%	15%
BASE	AMM	ONIA	NITR	ATE +	ORGA	NIC-N	TOTAL N		ORT	HO-P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	0%	-280%	25%	98%	-17%	-94%	9%	18%	26%	-85%
YEAR TWO	13%	-70%	8%	76%	17%	-8%	8%	12%	1%	-1%
YEAR THREE	-1%	23%	21%	89%	2%	-34%	17%	38%	-5%	36%
	TS	ŝS	COF	PER	ZI	NC	IR	ON	тот	AL P
	CDS	POND	CDS	POND	CDS	POND	CDS	POND	CDS	POND
YEAR ONE	-46%	-245%	-3%	35%	-7%	-4%	-14%	-84%	-17%	-100%
YEAR TWO	35%	-83%	26%	47%	10%	-14%	33%	-105%	4%	-40%
YEAR THREE	15%	-130%	0%	0%	-10%	42%	6%	7%	16%	-6%

The efficiency of the system is characterized by the reduction (or increase) of pollutant concentrations from the inflow to the outflow of the CDS or Pond. A negative efficiency indicates a concentration increase. In general, the undersized CDS unit does not exhibit any consistent results for pollutant reductions in the water column. Almost all efficiencies are plus or minus about 20 percent and often removal or increase shift between years. It will be remembered that CDS units are not designed to remove the dissolved and suspended pollutants in the water column; they are designed to remove litter and bed loads and this reduction is not included in the water quality evaluation.

Although this small shallow pond did not usually remove pollutants, there were a few exceptions. Nitrates were usually reduced, and during base flow they were reduced by a considerable amount 76 to 98 percent. The more quiescent conditions during base flow conditions probably contributed to this result. Of some concern is the fact that nitrates are quite soluble and can migrate to the ground water where they frequently are a problem. The nitrates in this drainage basin were often measured at quite high concentrations of over 1.0 mg/l and high concentrations are more easily reduced. Base flow samples had averages over 1.0 mg/l. In contrast, ammonia concentrations always increased as water flowed through the pond.

Copper and zinc often showed fairly good removal efficiencies in the pond during storm flow (about 50 percent), but not quite as good results during base flow (30 to 60 percent). Organic nitrogen is usually increased in the pond probably a result of the uprooted aquatic vegetation and the large number of wading birds that used the site. Total suspended solids (TSS) were often reduced during storm flow, but increased by a large amount during base flow, probably caused by the same uprooted plant problems as organic nitrogen and also phytoplankton growth in this open water pond.

Dissolved Metals

Heavy metals are of great interest when discharged to receiving waters because they are possibly the most important toxic pollutants present (Burton and Pitt 2002), but the authors further explain, that stormwater metals are primarily associated with particulate fractions that are typically assumed to be "unavailable" to organisms. Many standards are based only on the dissolved portion, even though the particulate portion of heavy metals, which settle out in the sediments, may later be converted to more soluble forms through chemical or biological processes. Dissolved metals are defined as those particles that pass through a 0.45 micron laboratory filter and a comparison between the total recoverable and the dissolved portion of those metals found in measurable quantities at the Broadway Outfall are shown in Figure 11. As discussed above the concentrations of metals are usually measured much higher in storm flow than base flow except for copper where in the Broadway Outfall study base flow is sometimes higher and also variable between years. The copper results may be caused by some unmeasured activity discharging to the stormwater system between storms which also would explain the increased flow every afternoon during the early years of the study (see Appendix C). Most of the time the pond is able to reduce metal concentrations to low levels before discharge from the site for both storm flow and base flow.

Figure 11. Median dissolved solid metal concentrations (in color) are compared to median total recoverable solids (black) for storm flow and base flow water quality samples. Key: Orange=year one, blue=year two and green=year three. BEFORE=entering the CDS unit, AFTER=discharging from the CDS unit, and OUT= flowing out of the pond.

The reason various studies report much different percentages for the dissolved portion can be explained by site conditions. The percentage of runoff measured in the dissolved form changes with environmental variables present in the water column such as pH, organic matter, humic material, dissolved oxygen, sulfide concentrations, ionic strength, water hardness and chlorides. At the Broadway Outfall, there is a slight reduction in the dissolved form from the inflow to the outflow during storm flow, but a

more pronounced reduction during base flow when pond processes are better able to reduce pollution (Table 7). Other studies have reported somewhat different results.

The USGS (Ebbert *et al.* 1983 in Burton and Pitt 2002) found that when stormwater runoff discharge was high, the concentrations of the constituents in particulate forms tended to be high, and the concentrations of the constituents in dissolved forms tended to be low. During periods of low discharge, particulate concentrations were low and the dissolved concentrations were high. When the low flow associated with base flow at the Broadway outfall are compared to the high flow characteristic of storm flow, the total concentrations of zinc and iron are much lower, but there is not a correspondingly higher percentage in the dissolved fraction (Table 7). Copper is difficult to evaluate because so many of the samples were below the laboratory limit of detection (LOD).

Table 7. Percentage of heavy metals found in the dissolved fraction of total metals measured for each year at the inflow of the pond and at the outflow. (Inflow samples are an average between samples measured before the CDS unit and after the CDS unit).

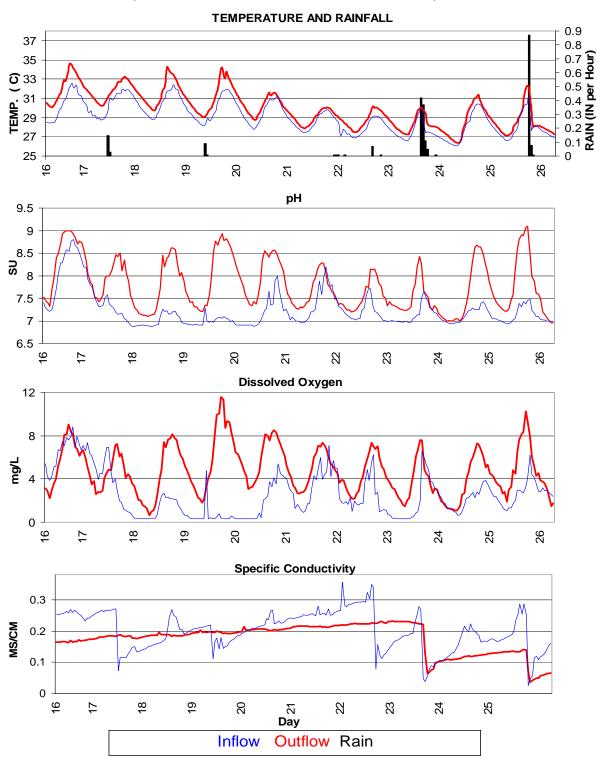
D	ISSOLVE	D AS P	ERCENT	AGE OF	TOTAL				
	YEAR 1	YEAR 2	YEAR 3	YEAR 1	YEAR 1 YEAR 2 YEAR 3				
	STOR	M FLOW	/ IN	STOR	M FLOV	V OUT			
ZINC	73%	54%	50%	25%	48%	68%			
COPPER	41%	28%	38%	37%	41%	36%			
IRON	40%	19%	8%	17%	13%	23%			
	BASE	E FLOW	' IN	BAS	E FLOW	/ OUT			
ZINC	41%	66%	85%	31%	44%	52%			
COPPER	56%	38%	na	32%	32%	na			
IRON	59%	15%	8%	20%	3%	3%			

Several studies reported in Minton (2005) also found much variability in the percentage of dissolved measured. For example, one study found 85 percent of iron, 29 percent of zinc and essentially none of the copper was measured as dissolved. In contrast, another study measured 100 percent of zinc and iron in the dissolved form and 50 percent for copper.

FIELD PARAMETERS

Physical water quality parameters are relevant to understanding the processes that influence constituent cycling in natural waters. For the third year of this study, dissolved oxygen (DO), pH, temperature and conductivity were measured in the pond about once a month using recording sensors. When both hydrolabs were working both the water at the inflow and water at the outflow of the pond were compared. All of the data are shown in Appendix F and an example is shown in Figure 12. The sensors were placed near the bottom of the pond where lower dissolved oxygen would be expected. Although the water was too nasty in the pipe and in the CDS unit to risk ruining the instruments, some inferences can be made about those conditions by comparing the

inflow water quality in the pond to the outflow water quality and later when the chlorophyll concentrations are discussed.


Characteristics

<u>Daily Fluctuations</u> - Oxygen and pH are affected by photosynthesis, a process where green plants convert sunlight into chemical energy and give off oxygen during the day while both plants and animals consume oxygen through respiration at night. The pH fluctuates because photosynthesis during the day utilizes carbon dioxide and produces oxygen, thereby shifting the carbonate-bicarbonate-carbon dioxide equilibria to a higher pH. In aquatic environments, this is seen as the daytime increase and the nighttime disappearance of both dissolved oxygen and pH. In general, the greater the fluctuations are, the more productive (eutrophic) the system is. In winter these fluctuations are dampened because of reduced sunlight and the dormant state of the biota. These processes also explain the lower dissolved oxygen and pH measured at the inflow of the pond where water has recently been discharged through the underground pipes and CDS unit, a dark anaerobic environment. The concentrations are higher and the fluctuations greater at the outflow once plants and animals in the pond ameliorate conditions.

<u>Rainfall Effects</u> - Rainfall decreases the diurnal fluctuations, especially near the inflow of the pond. This effect is caused by rainfall and runoff flowing into the pond and diluting the pond water before reaching the outflow. Conductivity (specific conductance) usually decreased with rainfall input, because rainfall has low conductivity, and then slowly increases between storms as evapotranspiration and other processes increase ion concentrations. The effect is more obvious at the inflow where stormwater has had less time to mix with pond water.

Summary Data

The average and median values for the field parameters provide an indication of conditions in the pond at the Broadway Outfall (Table 8). Temperature followed a seasonal pattern (i.e. higher in summer and lower in winter) and was almost the same for the inflow and outflow. Dissolved oxygen (DO) showed only weak seasonal patterns, but the averaged values were much higher in February of 2005 caused by a cold front passing through the area. Normally DO is increased in winter because oxygen is more soluble in colder water. Dissolved oxygen and percent saturation are measured about 50 percent higher at the outflow of the pond than at the inflow caused by the anaerobic water discharged into the pond through the CDS unit. The higher concentration at the outflow is caused by algae photosynthesis that can raise DO during the day to high supersaturated conditions (> 12 mg/l) which then drop to low levels (< 4 mg/l) at night. Since low dissolved oxygen levels are detrimental to a healthy well-balanced ecosystem, state standards for all waters set the minimum level for any 24-hour period at 5.0 mg/l with 4.0 mg/l as the absolute minimum. The pond fails to meet these standards more than half the time at the inflow, but concentrations are usually raised to acceptable levels by the time water is discharged from the site.

HydroLab Results- June 16-26, 2005- Broadway Outfall

Figure 12. An example of the field parameters measured during one ten day period in summer. See Appendix F for graphs of all the data collected.

The pH showed the pond as an alkaline system with averaged pH values greater than 7.4 standard units. Because of its influence on other chemistry, pH is an important regulatory parameter therefore state standards require pH in a neutral range between 6.5 and 8.5 standard units for most waters. The pond almost always met these requirements except for a few hot days during the summer. One of the rationales behind the standard comes from the constraints of many treatment bacteria, which are not able to exist outside the range 4.0 < pH < 9.5 (Kadlec and Knight 1996).

RAIN	Date: start	Statistic	Temp	pН	SpCond	DO	DO	Batt	Station in
inches	finish		degC	units	mS/cm	%Sat	mg/l	volts	pond at inflow
									or outflow
2.31	3-Apr-04	AVG	24.00	8.51	0.28	133.90	12.36	14.39	OUTFLOW
	13-Apr-04	MED	24.22	8.55	0.31	133.90	11.28	14.30	
0	13-Jan-05	AVG	16.87	7.43	0.30	36.08	3.50	12.99	INFLOW
	23-Jan-05	MED	16.62	7.44	0.31	35.50	3.55	12.90	
0	29-Jan-05	AVG	17.81	8.10	0.36	75.19	7.21	12.30	OUTFLOW
	8-Feb-05	MED	17.88	8.08	0.36	73.80	7.09	12.30	
2.13	27-Feb-05	AVG	19.02	7.10	0.18	38.58	3.63	10.68	INFLOW
	7-Mar-05	MED	19.38	6.95	0.18	34.55	3.28	10.50	
2.13	27-Feb-05	AVG	19.11	7.51	0.17	49.47	4.61	14.37	OUTFLOW
	7-Mar-05	MED	19.70	7.42	0.15	47.60	4.53	14.20	
0.70	4-Apr-05	AVG	24.94	7.57	0.30	48.41	3.98	13.74	INFLOW
	14-Apr-05	MED	24.52	7.51	0.32	51.50	4.12	13.70	
0.70	4-Apr-05	AVG	25.09	7.74	0.24	66.20	5.46	14.84	OUTFLOW
	14-Apr-05	MED	24.93	7.73	0.25	65.40	5.47	14.70	
2.62	19-Apr-05	AVG	23.35	7.68	0.17	59.45	5.04	13.94	OUTFLOW
	29-Apr-05	MED	23.26	7.63	0.13	54.70	4.85	13.90	
0.29	5-May-05	AVG	24.95	7.78	0.27	59.06	4.75	13.08	INFLOW
	15-May-05	MED	24.52	7.72	0.30	59.00	4.80	13.10	
0.29	5-May-05	AVG	26.68	8.18	0.18	76.20	6.10	13.19	OUTFLOW
	15-May-05	MED	26.60	8.26	0.18	71.00	5.79	13.20	
2.32	16-Jun-05	AVG	29.00	7.24	0.20	33.79	2.59	12.42	INFLOW
	26-Jun-05	MED	28.83	7.09	0.21	28.40	2.19	12.40	
2.32	16-Jun-05	AVG	29.92	7.80	0.18	63.74	4.78	12.30	OUTFLOW
	26-Jun-05	MED	29.84	7.60	0.19	58.00	4.50	12.20	
4.90	19-Aug-05	AVG	29.53	7.57	0.24	52.35	3.94	10.48	INFLOW
	29-Aug-05	MED	29.23	7.46	0.24	46.15	3.52	10.60	
NFLOW	AVERAGE		24.05	7.45	0.25	44.71	3.73	12.23	INFLOW
NFLOW			24.95	7.50	0.26	43.50	3.79	12.71	
	V AVERAGE		23.71	7.93	0.23	74.88	6.51	13.62	OUTFLOW
DUTFLO	V MEDIAN		23.86	7.87	0.20	70.54	5.78	13.78	

Table 8. Field parameter	summary	data for the	inflow a	nd outflow	of the pond at
the Broadway Outfall.	-				-

Specific conductance is a measure of the total concentrations of ionized materials at the sampling site and was measured within the upper range for natural systems. The specific conductance of most natural inland surface waters is between 0.01 and 0.3 mS/cm (Kadlec and Knight 1996).

GROSS SOLIDS

Gross pollutants, collected in devices such as CDS units, are the solid material including trash, litter, debris and sediments larger than 75 um that are not effectively measured using automatic water quality samplers. Yet these pollutants degrade aquatic habitat, cause visual blight, smother productive sediments, leach harmful pollutants, and can cause unpleasant odors. Litter includes human derived trash, such as, paper, plastic, Styrofoam, metal and glass. Debris consists of organic material including leaves, branches, seeds, twigs, and grass clippings. Coarse sediments are inorganic breakdown products from soils, pavement or building material. All these pollutants are discharged as bed loads to rivers, lakes and streams. These are the sediments that build up in storm water ponds and will one day have to be removed or become a pollution source. They include the material that form deltas and cover productive bottom sediments, which create problems in natural water bodies and require multi-million-dollar stream and lake restoration efforts. The material collected by the CDS unit at the Broadway Outfall site was quantified on a yearly basis with representative samples collected each time the unit was vacuumed out. In addition, during most cleanouts, the samples were divided into particle size ranges and analyses were run on each particle size. Also the water quality data presented earlier was summarized to coincide with each cleanout period for comparison to the gross solids. All the data for this section can be found in Appendix G, an untested method for calculating efficiency of the system including both water quality and the gross solids is in Appendix H and a summary paper of the results is in Appendix Ι.

Volume Collected

The volume of material in the CDS unit is measured monthly and cleaned out when the depth is five to six feet. During these monthly inspections, the litter that is floating on the top of the mass is skimmed off and saved to be air dried and quantified later. The CDS unit has been vacuumed out five times since the unit was installed in November 2001. Since the monitoring study had not begun when the unit was first cleaned in June of 2002, no samples were taken. But samples were taken in April 2003, July 2003, March 2004 and April 2005. During all years the material collected by the CDS unit included an approximate volume of about 413 ft³ (11.69 m³) when the unit was about six feet deep. It appears that gross solids in this drainage basin are deposited primarily in a short time period of one to two months and volumes remain relatively unchanged during the rest of the year. Street sweeping activities in the basin likely explains some of the yearly variations. The data for the four cleanout events was roughly divided into a three year time period (Figure 13).

Although it appears from year one and year three data that February through April produce the most material in the unit, this was not true for year 2 when the unit also filled up during the summer rainy season. Of some interest is that during the summer of intense hurricanes, no material was collected. It should be remembered that during the rainy summer season of 2004, 57 percent of the storm flows bypassed the CDS unit while in 2003 only 38 percent did so, which could have affected the accumulation rates (see Table 5). Also in Figure 13, it appears that the unit collects more material during months with low rainfall amounts than it does when rainfall is high and intense storms are the norm. It should be noted that a much larger unit was recommended for this 132acre drainage basin, but the terrain was too flat to accommodate the larger unit.

Figure 13. Measurements taken inside the CDS unit to determine how much material has been collected and to schedule clean-outs. The first cleanout is not shown in the figure and occurred on June 25, 2002. Street sweeping in the basin probably affected the accumulation of material in the CDS.

Chemical Analysis

The material collected in the CDS unit for each cleanout indicates considerable differences in concentrations between years as well as samples analyzed by different laboratory methods (Figure 14). The gross solid material that was analyzed from the CDS unit was compared to average water quality concentrations for both storm and base flows during the same cleanout intervals. Each solid bar in Figure 14 represents the average concentrations from two separate sample and the lines are the averaged water quality concentrations measured for storm and base flow during the cleanout intervals. The circles with an X are the results of duplicate samples sent to a different lab. These differences will be discussed in more detail later.

<u>Water Quality</u> - Flow weighted water quality samples were collected for most storm events and base flow samples were collected over several days about every two weeks to measure differences between the CDS inflow and outflow water quality concentrations (Figure 14). Only those constituents that were also measured in the sediments are discussed in this section and the water quality samples have been averaged to coincide with the cleanout periods. No water quality is shown for lead because most of the samples were below the laboratory limit of detection. Of some concern to researchers, is that water sitting in the CDS unit will increase nutrient concentrations because organic leaves and other debris are known to leach nutrients as they decompose (Strynchuk *et al.* 2000 and others). Although no statistical analysis has been performed, there is no consistent or obvious data in this study to support the idea that nutrients are being increased in concentration as water passes through the unit.

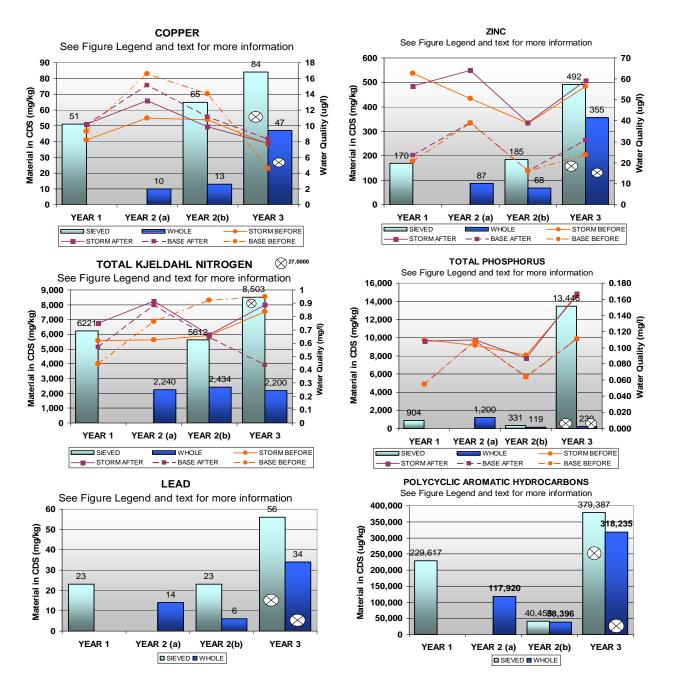


Figure 14 - Concentrations of pollutants in gross solids compared to the average water quality measured in storm flow and base flow during the sampling intervals. Key: BARS=constituent concentrations in the material collected by the CDS unit, LINES=average water quality concentrations measured during the same months as the material was collected in the CDS unit. SOLID LINES=storm flow samples. DASHED LINES=base flow samples. ORANGE CIRCLES=water quality before entering the CDS unit. MAROON SQUARES=water quality downstream of the CDS unit. Circles with an X represent concentrations measured by a different lab (#2) for the samples in year 3. Light blue bars=sieved samples; dark blue bars=whole samples. Holding times were greatly exceeded for lab #2.

One reason that there may be so little difference between the water quality before and after it enters the unit is that the water has been associated with the solids during the flow down the pipe and the residence time of the water in the CDS unit is too short to change the concentrations. A different sampling scheme with fresh leaves and a more controlled timing might have produced entirely different results than these concentrations averaged on a yearly basis. A summary of the water quality data divided into cleanout intervals is presented in a separate stand alone report in Appendix H.

<u>Gross Solids</u> - Representative samples of the material collected by the CDS unit were sent to a laboratory to be analyzed for Polycyclic Aromatic Hydrocarbons (PAH), metals, nutrients and percent organic matter using standard methods for soil analysis. The litter was quantified separately and was not included in the samples sent to the lab. For the gross solid chemical analyses, all the data are reported in Appendix G, and summarized in Figure 14. Each of the three samples collected contained five 2-liter aliquots taken at different depths in the CDS unit and then combined on a massweighted basis for the yearly results. A separate set of samples were collected on the opposite side of the CDS unit. There was considerable difference in the quantitative results between the different collection dates. To try to understand these difference better the year three material was divided and sent to two different labs for comparison.

When the gross solids (the solid bars in Figure 14) are compared for the four cleanout events, year 3 exhibits significantly greater concentrations of pollutants and in almost all cases the sieved samples have higher concentrations than the sample analyzed without sieving (a whole sample). For year one, the analysis was only conducted on sieved samples, which in this study mostly separated the leaves from the sediments. For year 2a, only a whole sample was analyzed. In years 2b and 3, both the sieved and whole samples were compared. For year 3 (lab #1), concentrations were significantly higher with the exception of the nutrients in the whole sample. Usually only two particle sizes had enough sample to be analyzed and 60 to 80 percent of the sample was for the largest particle size which included mostly leaves. We later learned that sieving is not recommended because it can substantially change the physiochemical characteristics of the sediment sample (US EPA 2006).

The PAHs were also measured at higher concentrations in the collected mass during year 3. In the early years, they were measured at almost the same concentrations as had been measured in the sediments at the end of the pipe before the project started to be discussed later, indicating that the CDS unit is removing these potentially carcinogenic particles from the storm water flow stream. A problem with interpreting the data is that absorbent bags designed to remove PAHs, were put in the CDS unit after each cleanout. There were some problems with the bags splitting open or sometimes floating back out into the storm sewer pipe and once one was even found in the pond. This could present a measurement problem especially if some of the spilled material was measured in samples raising concentrations. However, leaves and other particles are also effective for absorbing PAHs and this could possibly explain the extremely high concentrations measured in the mass.

<u>Compared to Standards</u> – The disposal of the material collected in CDS units is of some concern. When gross solids are compared to numerical sediment quality assessment guidelines for Florida inland waters (see Table 3); levels of copper and lead are often measured at concentrations that could be harmful to wildlife in the sieved samples, but rarely reach the level where they would probably cause a detrimental effect in the whole sample. Zinc was an exception in year 3. The lead measured for the first two years was well below the levels considered possibly toxic (> 46 mg/kg) and only in the third year, were concentrations measured above levels where they might cause problems to benthic organisms. The results for copper and zinc were similar, although the sieved samples reached levels where they might cause problems (>32 mg/kg for copper and > 120 mg/kg for zinc), but of greater concern the sieved samples were above the probable toxic level (> 460 mg/kg for zinc from lab #1). Results were different for lab #2 as will be discussed later.

The PAHs measured in the mass collected by the CDS unit present a more serious problem. Concentrations were always higher than the possible toxic level (> 1,600 ug/kg) and also greatly exceeded the probable toxic level (> 23,000 ug/kg). PAHs do not easily dissolve in water, which is one reason no water quality data are shown in Figure 14. PAHs tend to adhere to solid particles and settle to the bottom of rivers or lakes. PAHs have been identified as a serious problem in Hillsborough Bay (Grabe and Barron 2003) and collection units such as a CDS unit combined with proper disposal may help reduce this problem. These pollutants are a great concern since the plants and animals living on the land or in water (ATSDR 2001). Breakdown in soil and water generally takes weeks to months and is caused primarily by the action of microorganisms. More study is needed to determine the most cost effective method for treating and disposing of this material

Particle Size Analysis

The constituent concentrations measured in the material collected by the CDS unit during the four cleanout periods exhibited widely different results (see figure 14). To better understand these differences, samples were analyzed by particle size and for year three duplicate samples were sent to two different laboratories. Once the samples had been sorted into particle sizes using the dry sieve method, chemical analyses were performed on the different size ranges.

Sieve analysis was influenced by the large amount of leaves in the material collected by the CDS unit and most of the largest particle sizes were measured as leaves that do not go through sieves (Figure 15 and Appendix G-4). In addition, the sieve analysis was most often conducted on different sieve sizes each time the samples were analyzed. The two samples (A and B) taken from opposite sides of the CDS unit usually show comparable results, except for year one, when considerably more sediment was collected in sample B. During sample collection, it was noted that the leaves kept the Ekman dredge from closing completely and some of the sediment appeared to drain out of the samples before we could transfer it to the adjacent bucket. To test how much this might affect the results, we also collected a sample the next day from the disposal site (sample C) for year 3. Year three also includes samples from the two laboratories (COL=lab #1 and PPB=lab #2). As mentioned above US EPA does not recommend sieving for constituent concentrations. We learned the hard way.

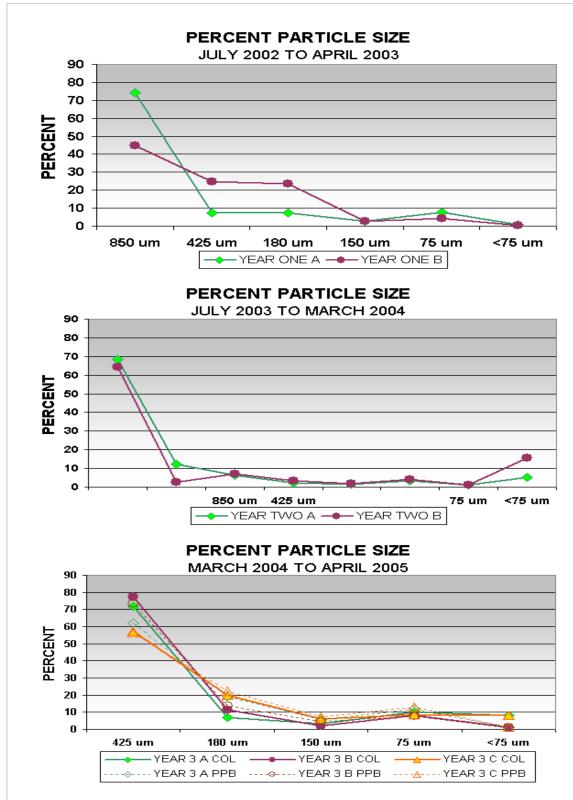
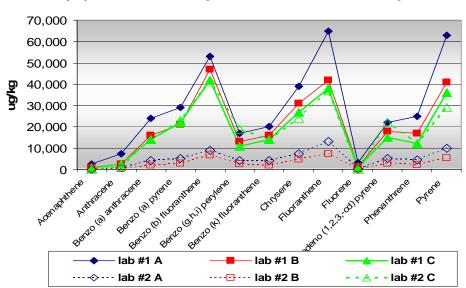


Figure 15. Particle size analysis for three cleanout periods. The largest particle size was mostly composed of leaf material.

Our concern about losing sediment from the samples collected by the Ekman dredge appears justified. Only about 55 percent of the sample was sorted out in the largest size fraction (leaves) at site C compared to 70 to 80 percent of the samples collected by the dredge. Another difference between the samples is that the dump site samples were collected the next day and the material sent to lab was in a much drier condition. Since most of the chemical analyses were conducted on only two or at most three particle sizes the results in the next section are shown as greater than 850 microns and less than 850 microns.

Comparison of Laboratory Results

The wide differences in the concentrations measured in the material for the different cleanout periods were of some concern. For year three, samples were sent to two different laboratories to compare results. Samples were sent to lab #1 that had performed our past analysis and duplicate samples from the same batch were sent to lab #2. It should be mentioned that lab #2 was sent a much larger amount of material than lab #1 because we were interested in having enough material to sort into more particle class sizes. As luck would have it, lab #2 did not have the time to analyze the samples and sent some of the samples to lab #1 to be analyzed. Although there is no difference between the samples sent to the laboratories, lab #2 samples had much longer holding times which exceeded recommendations by 25 to 40 days.


<u>Sieved Samples</u> - The chemical analysis performed on the sieved samples by the two labs show quite different results. Although more than two size fractions were sometimes analyzed, to make comparisons easier the data presented here combined these samples in the correct ratio to represent two size fractions (labeled leaves and sediments). Tables 9 shows the results of the two different labs in year three compared to samples collected in year one and year two where the same data is presented in both tables. The same data are shown in Figures in Appendix G.

Although the data trends are affected by the laboratory analysis in year three some obvious patterns are still noted. Metals are usually associated with the smaller particle size (the sediments) and much higher concentrations of metals are often measured in this sediment fraction until the third year for lab #1. Total Kjeldahl nitrogen (TKN) was expected to be elevated in the leaf fraction and this was often the case except for year two when TKN was measured in each fraction in about equal concentrations. But the biggest difference in concentrations was seen for year three in the data from lab #1 where concentrations in the sediments were the highest measured by any lab during the entire study. A different pattern was measured by lab #2 where the leaves had higher concentrations of TKN as expected. Total Phosphorus was often measured in about equal concentrations between the two size fractions except for lab #1 in the third year. Both leaves and sediment would be expected to contain phosphorus since it is an integral part of leaves but also readily attaches to soil particles, especially if iron is present and the environmental conditions are oxygenated. PAHs were measured by all labs at high levels during all years, but were greatly elevated in the results from lab #1 during year 3. The low concentrations of PAHs during year two may indicate that intervals that only include the winter dry season have much lower PAHs transported. The same argument may hold true for phosphorus. The data for organic carbon are a mystery.

Laborator	y #1 (C	COL) for	' year ti	hree			Laboratory #2 (PPB) for year 3						
	Copper	(mg/kg)	Zinc	(mg/kg)	PAHs	(ug/kg)		Copper	(mg/kg)	Zinc	(mg/kg)	PAHs	(ug/kg)
	leavess	sedimen	leaves	sediment	leaves	sediment		leaves	sediment	leaves	sediment	leaves	sediment
year 1 A	57	132	190	479	232,200	388,320	year 1 A	57	132	190	479	232,200	388,320
year 1 B	27	25	89	65	218,350	150,961	year 1 B	27	25	89	65	218,350	150,961
year 2 A	32	140	83	360	17,325	30,237	year 2 A	32	140	83	360	17,325	30,237
year 2 B	45	96	129	319	26,326	44,806	year 2 B	45	96	129	319	26,326	44,806
year 3 A	91	69	620	250	273,310	634,895	year 3 A	30	36	124	282	213,045	263,427
year 3 B	80	96	530	260	344,285	513,575	year 3 B	44	87	191	776	239,655	407,690
year 3 C	52	40	320	201	396,585	371,163	year 3 C	23	57	177	156	254,270	268,085
	TKN (I	ng/kg)	Tot. Ph	sophorus	TOC (I	mg/kg)		TKN (mg/kg)	Tot. Ph	sophorus	TOC (mg/kg)
	leaves	sedimen	leaves	sediment	leaves	sediment		leaves	sediment	leaves	sediment	leaves	sediment
year 1 A	7,060	5,320	1,060	985	26	8	year 1 A	7,060	5,320	1,060	985	26	8
year 1 B	9,520	1,293	784	746	31	3	year 1 B	9,520	1,293	784	746	31	3
year 2 A	5,600	5,500	220	450	na	na	year 2 A	5,600	5,500	220	450	na	na
year 2 B	5,800	5,400	230	610	na	na	year 2 B	5,800	5,400	230	610	na	na
year 3 A	3,500	20,000	5,400	33,000	148,000	27,000	year 3 A	7,904	2,472	488	404	220,000	25,949
year 3 B	6,000	17,000	6,500	38,000	57,000	22,000	year 3 B	12,416	4,799	559	446	220,000	25,516
year 3 C	2,100	15,730	3,000	26,040	64,000	26,380	year 3 C	12,063	2,564	338	508	220,000	26,580

Table 9. Comparison of results from two laboratories for year three

<u>Whole Sample</u> - The data for the whole sample (not sieved) are also puzzling. The concentrations for the individual PAHs show that the concentrations from lab #1 for samples A and B are considerably higher than for lab #2. While the samples from the two labs for the dump site (C) are almost identical (Figure 16). Longer holding times could possibly explain the reduction in A and B, but then why not in C?

Polycyclic Aromatic Hydrocarbons - whole sample

Figure 16. Comparison of individual PAHs analyzed by two different labs for year three.

There was also considerable difference in constituent concentrations for other parameters for samples A and B, but not necessarily for C (Figure 17). For metals the concentrations were usually twice as high for lab #1, while the opposite was true for the nutrients.

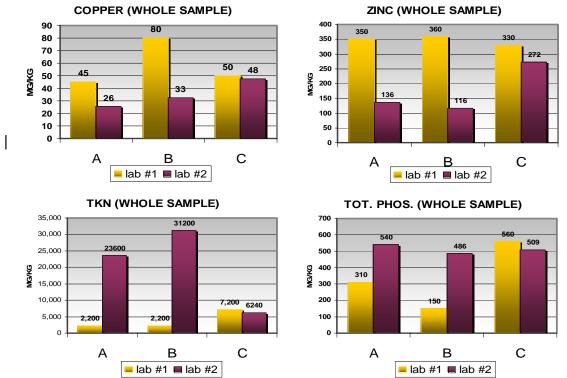


Figure 17. the concentrations of metals and nutrients measured in duplicate samples in year 3 as reported by two different laboratories.

To try to put this data in perspective, some of the physical parameters were investigated. It will be remembered from the particle size analysis that sample C contained more sediment than either A or B. This was verified when the percent solids measured in the samples are compared, the percentage in sample C contains almost twice as much solid as samples A and B (Figure 18).

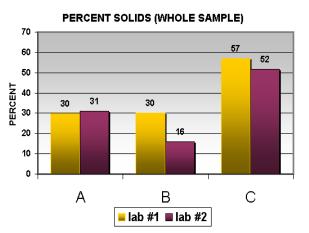
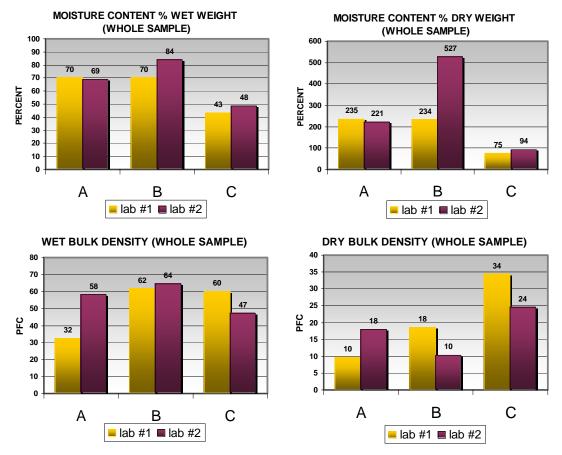



Figure 18. Percent solids measured in the samples analyzed by two labs. Percent organic matter was requested but not reported.

Much of the other physical data also supports the idea that sample C from the dump site was shipped to the laboratories in a much drier condition than samples A and

B (Figure 19). It should be remembered that these physical parameters were measured by the same sub-contractor for both lab #1 and lab #2, although the analysis for lab #2 were conducted on May 24th almost two weeks later than lab #1's samples which were analyzed on May 12th.

Figure 19. Physical parameters measured for the material in the CDS unit for year three as reported by two different laboratories.

<u>Lessons Learned</u> - Standardized methods need to be established for analyzing gross solids. Some of the results of the comparison of the different laboratory results in this study recommend these possible solutions. These guidelines are preliminary and a much more careful analysis conducted by more people involved with this type of analysis needs to be considered before these ideas are adopted. Also many of the following suggestions have been taken from an Environmental Protection Agency report intended for sediment sampling (US EPA 2006).

- All samples to be compared should be reported from the lab as dry weight. This makes comparison between researchers and sampling events more reasonable.
- If PAHs are to be analyzed UV shielding may be necessary to minimize ultraviolet light activated toxicity.
- Sample concentrations for volatile species can be affected by exposure to air (i.e. ammonia or volatile organics).

- Where metals are a concern, it may be necessary to sub-sample under oxygenfree conditions to minimize oxidative changes.
- When removing sub-samples avoid the material adjacent to the sides of the sampling device.
- Overlying water should be siphoned off, not decanted. Ideally the overlying water should be removed by slow siphoning using a clean tube near one side of the sampler. If water is turbid give it a chance to settle.
- Fill sample containers completely unless samples are to be frozen prior to analysis.
- Samples should be transported and stored at 1-4° C with no headspace and no supernatant.
- Samples should use a #4 sieve (4.75 mm) to separate the leaves from the sediments. OR Some researchers have found good results for separating the leaf material by using 1 mm nylon screen with the material dried out and it was reported that this did a good job of separating the leaves from the sediments in bench scale tests (Daniel Smith, personal communication).
- Samples should be sent to the lab as soon as processed (within 2 days) to avoid holding time problems. The holding time (US EPA 2006) reported for extractable organics is 7 days (until extraction) and 30 days (after extraction) and the samples should be frozen.
- Sieved samples elevate concentrations and more study is needed to make these samples more comparable to a whole sample. The Environmental Protection Agency recommends that samples not be sieved because it can disrupt the natural chemical equilibrium by homogenizing or otherwise changing the biological activity with the sediment (US EPA 2006).
- If particle size analysis is conducted, send sufficient sample to the lab to make sure there is enough sample in different particle sizes to do chemical analysis (4 to 5 gallons is recommended).

Constituent Concentrations by Particle Size

For the final year, a 5 gallon container filled with sample was sent to lab #2 in order to analyze several particle sizes. Four particle sizes were separated by dry sieving that had enough sample for analysis (Figure 20). Most of the samples exhibit very little difference between different particle sizes. Samples A and B taken inside the CDS unit at time of cleanout sometimes show higher concentrations in Sample B, especially for zinc and copper. The only distinct pattern is for TKN in the largest particle size which mostly consists of leaves; while metals tend to be measured at their lowest concentrations in this largest size fraction.

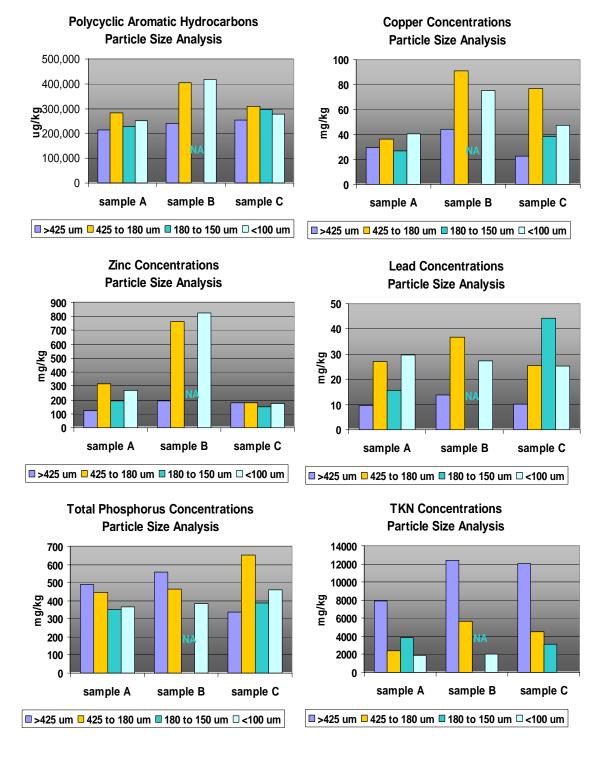


Figure 20. Constituents concentrations measured in each of four particle sizes (Sample B has only three). Analysis performed by lab #2.

Litter (Trash)

The litter was collected, air dried, weighed and sorted for each cleanout period (Table 10). The samples include the litter that had been skimmed off each month as well as the litter retrieved from the mass of material removed by the vacuum truck at the time of clean out. Although the amount of litter is small compared to the leaves and heavy sediments, it is an eye sore and has the potential to impact wildlife as well as leach pollutants. Plastics were measured more often than any other litter category, but Styrofoam was also found in large quantities.

During cleanout period 2b there is a question about whether the City of Temple Terrace personnel left us all the litter skimmed off the top each month or instead followed their normal procedure from the cleanout of their other CDS units and took it off to the landfill. At any rate much less litter was collected during this 10-month period than during the two previous collection intervals, which had covered much shorter time periods. Year 3 data are not available because of a communication problem with personnel. The amount of litter collected by the CDS unit during each cleanout reported was quite small (8 to 17 ft³) compared to the amount of leaves and sediments removed from the CDS unit (182 ft³ to 260 ft³).

CATEGORY	CI	CLEANOUT YR 1 CLEANOUT YR 2a CLEANOUT				CLEANOUT YR 2a CLEANOUT YR 2					2b	
	KG	LB	M ³	FT ³	KG	LB	M ³	FT ³	KG	LB	M ³	FT ³
Plastic	13.91	30.66	0.25	8.79	19.21	42.34	0.33	11.76	5.33	11.76	0.13	4.44
Aluminum	1.65	3.63	0.04	1.52	2.67	5.88	0.05	1.75	0.74	1.63	0.01	0.23
Styrofoam	0.39	0.85	0.08	2.91	0.40	0.89	0.03	0.99	0.23	0.51	0.05	1.64
Miscellaneous	0.93	2.05	0.00	0.11	2.62	5.78	0.01	0.48	0.49	1.07	0.05	1.65
Wood	1.65	3.63	0.04	1.52	2.67	5.88	0.05	1.75	0.00	0.00	0.00	0.00
Paper	0.41	0.91	0.00	0.04	0.00	0.00	0.00	0.00	0.09	0.20	0.00	0.12
Glass	0.10	0.23	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cig. Butts.	0.02	0.04	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fabric	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.54	0.00	0.12
TOTALS	19.05	42.00	0.42	14.91	27.56	60.77	0.47	16.73	7.12	15.71	0.23	8.20

Table 10. Amount of litter collected in the CDS unit for 3 cleanout periods.

Decant Water

We had a concern about polluting the pond and downstream water quality when we saw the scum and turbid water being decanted during each cleanout (Figure 21). When we compared the concentrations of pollutants of concern in the decant water it usually does have higher concentrations, but not as high as expected.

The decanted samples are shown in the red bars and the yearly averaged water quality samples are in blue, two averaged concentrations are given for the decanted water because one of the samples had much higher concentrations than the rest of the samples. The decanted sample with the outlier removed is the second bar. Although the amount of water decanted is small compared to the stormwater passing through the system, the turbidity lasted for several days and was an eyesore. If the unit had been outfitted with a method to close off the inflow during cleanout, the water could have been decanted back into the storm sewer and stored in the pipe until the cleanout was complete and it would have been retreated.

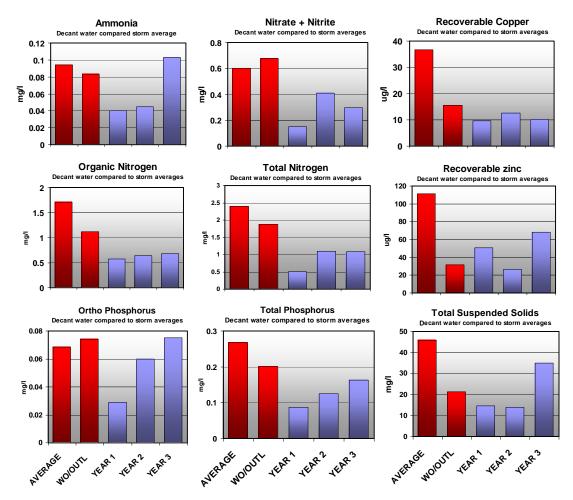
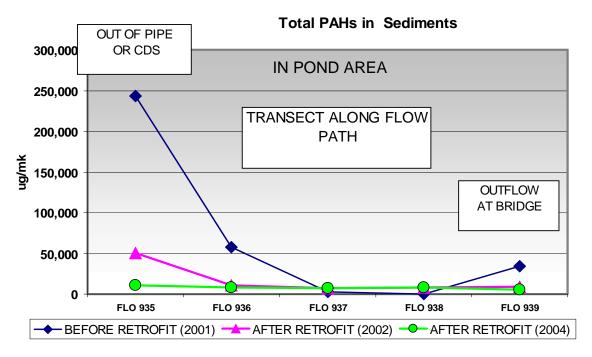


Figure 21. Average water quality concentrations decanted into the pond from the CDS unit during cleanout (1st two bars) compared to average water quality measured in storm flow on a yearly basis (last 3 bars). The red bars represent the decanted water both with and (the 1st bar) without an outlier (the 2nd bar), the blue bars are averaged storm flow for each of the three years.


SEDIMENT ANALYSIS

The effect of polluted sediments from gross solid deposition has not always been emphasized in stormwater studies that make their interpretation and pollution reduction based on water quality data for individual storm events. But sediments can accumulate pollutants through mechanisms of direct deposition of solids, or through various processes where soluble pollutants precipitate/sorb and contaminate the sediments. Scouring of storm conveyance systems and ultimately streams and rivers takes a long time and is difficult to relate to specific storm events. These polluted sediments may have a much greater toxic effect on the biota than the dissolved toxicants in the water column. Many studies have shown the severe detrimental effects of urban runoff on receiving water organisms (Pitt 1995). Other studies have documented that even tolerant species are eliminated when toxic levels of metals and PAHs are measured in the sediments (Rushton *et al.* 2004).

Sediment samples were collected before the retrofit was constructed to document existing conditions in the flow path from the point where water from the drainage basin was discharged into an existing ditch (STA 935). Samples were also collected in the ditch where the pond is now built and at the outfall of the pond under the bridge (See Figure 2 for sampling locations). All of the data are presented in Appendix J.

Polycyclic Aromatic Hydrocarbons (PAH)

PAHs were detected at toxic levels at this site in both the gross solids collected by the CDS unit and in the sediments before the retrofit. A summary graph of the total PAHs measured in the sediments is shown in Figure 22.

Figure 22. Total polycyclic aromatic hydrocarbons measured in the sediments in May 2001, before the retrofit was constructed in August 2002, almost a year after construction and again in August 2004. (See Figure 2 for station locations)

Not only were the PAH concentrations measured at much higher levels in the soils before the retrofit in 2001, but concentrations were also much higher near the storm sewer where it flowed into the open water ditch. Concentrations tapered off to non-detectible concentrations as water flowed down the ditch until it reached the bridge, where additional storm runoff entered the flow stream. Although PAH concentrations were much lower in 2002, they were detected at two stations where low or no concentrations had been detected in 2001. This was probably the result of moving the soil around when the pond was constructed and depositing some of the contaminated soils into the pond area

PAHs enter the environment mostly from volcanoes, forest fires, residential wood burning, pavement, and exhaust from automobiles and trucks (ATSDR 2001). PAHs do not easily dissolve in water, but stick to solid particles and settle to the bottoms of rivers or lakes. Breakdown of PAHs in soil and water generally takes weeks to months and is caused primarily by the actions of microorganisms. The data at the Broadway Outfall Retrofit site suggests that the CDS unit is reducing the amount of PAHs being transported to the Hillsborough River. The data also indicate that PAHs in the soils were confined close to where they entered the sunlit open aerobic ditch.

Metals

Metals were not measured during 2002, but in 2001 (before construction), levels were well below those concentrations considered toxic to organisms and were measured at even lower concentrations in 2004 (Figure 23). None of the metals even approached the level considered a possible toxicity problem in the sediments (see Table 3), although as will be remembered from the gross solid data, some of the gross solids did approach possibly toxic levels. The data from 2001 before the CDS unit was installed indicate that the ditch concentrated most metals near the outfall and the concentrations were greatly reduced downstream. Metals do not appear to be a problem at this site even though it drains a large asphalt parking lot and several major urban thoroughfares. Either the recently excavated pond or the CDS unit has resulted in even lower levels of metals in the sediments three years after construction. The data do show that ditches are a good mechanism for removing both PAHs and metals and perhaps better designs might solve some urban water pollution problems.

Nutrient concentrations present a different picture (Figure 24). Total Kjeldahl Nitrogen (TKN) was measured in high concentrations at the Broadway storm sewer outfall before the CDS unit was installed, but these concentrations were much lower in 2004. This may have resulted from the removal of leaves by the CDS unit. Total phosphorus presents a different picture. Concentrations of phosphorus were quite low in the sediments at the storm sewer outfall during both years and increased as water traveled through the heavily vegetated ditch/pond. The phosphorus levels in the ditch were quite high compared to some of our other studies (Rushton *et al.* 1997, Rushton 2002, and Rushton *et al.* 2004). Although the agricultural stormwater system studied in 2002, which had exceptionally high phosphorus concentrations in the water column (>2 mg/l), also had highly enriched sediments at some locations (> 2,000 mg/kg). The highest average concentrations of phosphorus measured in the water column entering the pond at the Broadway Outfall was only about 0.15 mg/l, so the elevated concentrations must have been caused by the dying vegetation planted in the pond and the grass clippings that were seen floating in the pond after mowing operations.

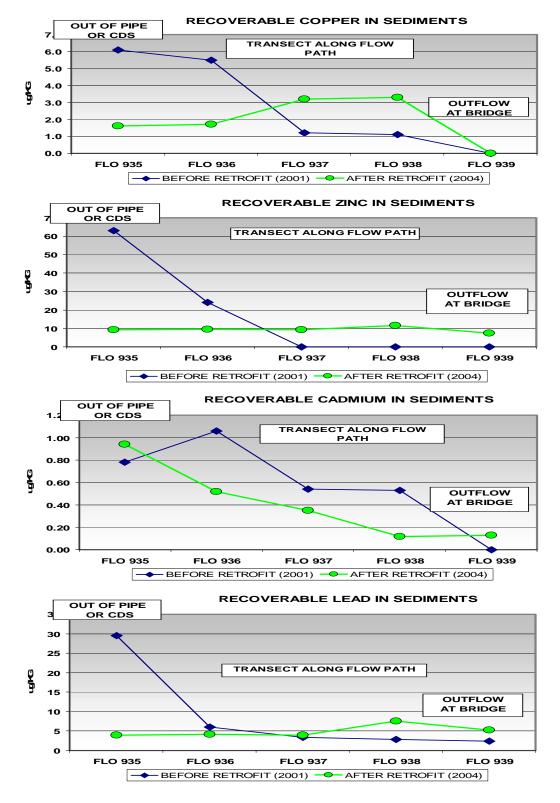
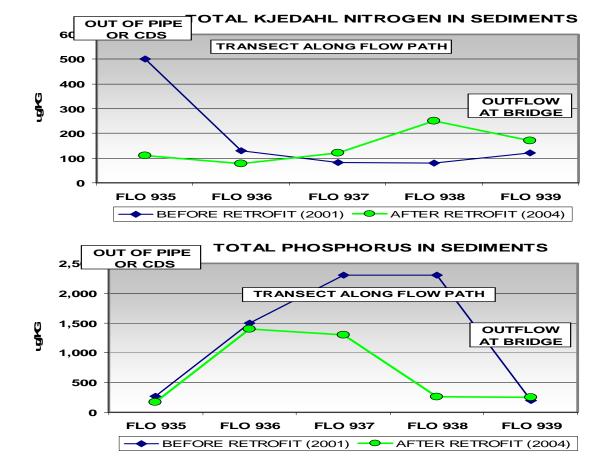



Figure 23. Metal concentrations are compared in the sediments at the Broadway Outfall before the CDS unit was installed and two years after installation.

Figure 24. Nutrient concentrations measured along the flow path of the ditch (2001 or the pond (2004). See table 2 for site locations.

Pesticides

Tests were also run for pesticides and none were detected in 2001 and the few detected in 2002 were below the laboratory quantification limit. None were detected in 2004.

Particle Size Analysis

Particle size separation performed on the sediments in the pond (Figure 25) indicate that before the installation of the CDS unit, the large sized particles in the pipe were deposited near the inflow of the Broadway storm sewer (Stations 935 and 936) but soon tapered off to about the same particles size distribution as seen after the installation. Only Station 935 measured a large proportion of large particle sizes after construction and this may have been caused by the rubble that was placed near the entrance of the discharge pipe to armor the pond against the storm surges that pass through the system. The other anomaly between years was station 939, where two storm sewer pipes had entered the ditch before the pond was constructed but were

rerouted in order to make only one inflow and one outflow into the pond for the monitoring study. The implication is that the CDS unit is removing particles larger than 500 mm that had been transported to the ditch before the CDS unit was installed. Another observation is that the large particles were not traveling very far down the ditch and there is a question about whether they would have reached the river or if it would have been necessary to remove them to keep from contaminating the environment as will be discussed in the next section.

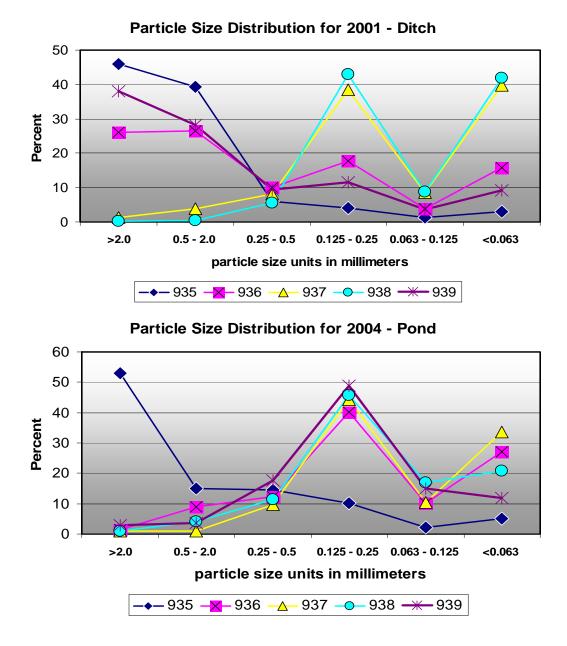


Figure 25. Particle size distribution measured for the sediments in the ditch/pond before and after installation of the CDS unit. See Figure 2 for the location of the sampling sites. The sampling sites extend from where the Broadway Outfall storm sewer pipe discharged to the bridge location where the pond ended.

PAHs in Soil Compared to Gross Solids

When the pre-construction PAH soil samples collected in July 2001 near where the storm sewer pipe entered the ditch are compared to the samples collected in the CDS unit in April 2003, concentrations are similar (Table 11). This indicates that these toxic levels of hydrocarbons that were previously released to the environment are now removed from the flow stream and disposed of in a location where they can no longer contaminate a water body. The CDS unit has removed a serious long-term impact related to the re-suspension of previously deposited polluted material that has been reported as even more detrimental to the environment than the short-term "first flush" effect associated with urban runoff (Heaney 1978).

Table 11. Comparison of PAHs in the soil sample collected where the pipe enters
the Broadway Outfall retrofit site (STA935) compared to concentrations measured
in the CDS unit during cleanout.

SEMI-VOLATILE ORGANIC				
POLLUTANTS - SEDIMENT		soil sample	CDS A	CDS B
		July-01	April-03	April-03
Acenaphthene	ug/kg	2,000	965	514
Anthracene	ug/kg	5,900	1,850	1,786
Benzo(a)anthracene	ug/kg	24,000	16,000	12,992
Benzo(a)pyrene	ug/kg	19,000	20,250	14,680
Benzo(b)fluoranthene	ug/kg	30,000	29,500	18,950
Benzo(k)fluoranthene	ug/kg	7,000	13,250	9,041
Benzo(g,h,i)perylene	ug/kg	10,000	26,250	16,370
Chrysene	ug/kg	26,000	31,250	21,050
Fluoranthene	ug/kg	41,000	46,750	32,790
Florene	ug/kg	2,800	1,165	871
Indeno(1,2,3-cd)pyrene	ug/kg	12,000	17,500	11,368
Phenanthrene	ug/kg	26,000	22,250	15,490
Pyrene	ug/kg	35,000	44,250	32,100
TOTAL	S	240,700	271,230	188,002

The effect of polluted sediments from gross solid deposition has not always been emphasized in stormwater studies that usually base their interpretation and pollution reduction on water quality data for individual storm events. But sediments can accumulate pollutants through mechanisms of direct disposition of solids, or through various processes where soluble pollutants precipitate and contaminate the sediments. Scouring of storm conveyance systems and ultimately streams and rivers takes a long time and are difficult to relate to storm events. These polluted sediments probably have a greater toxic effect on runoff biota than the dissolved toxicants in the water column. Many studies have shown the severe detrimental effects of urban runoff on receiving water organisms (Pitt 1995) and our quantification of the sediments and macroinvertebrates to be discussed in the next section is an attempt to investigate this aspect of pollution at the Broadway Outfall storm sewer outfall.

MACROINVERTEBRATES

The assessment of macroinvertebrate abundance and diversity is useful for determining the ecological integrity of water bodies. Since they are generally sedentary and have a high reproductive rate, the number of macroinvertebrate species present in a water body is an excellent indicator of environmental conditions, They are an essential component of aquatic food webs and their abundance is closely tied to a system of productivity and consumer diversity.

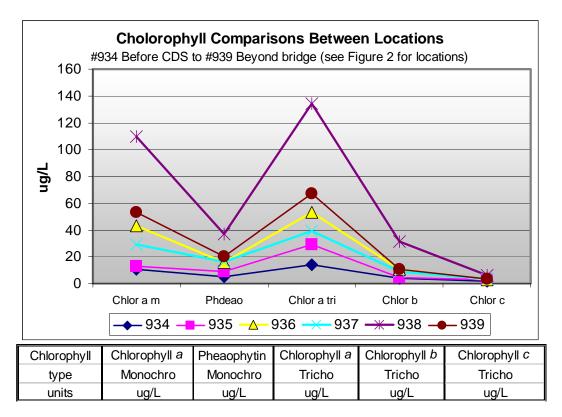
Macroinvertebrate samples were taken in the ditch before the pond was constructed in May 2001, and samples were collected again in August 2002 one year after construction of the pond (Table 12). Although similar numbers of taxa and individuals were collected for both sampling dates, the samples taken at station 935 after the construction shows a much larger number of individual at the inflow to the pond immediately after discharging from the CDS unit. A large number of individuals of a few species are typical of polluted environments. All of the data for the benthic organisms can be found in Appendix K. Both sampling dates show a low number of taxa and species diversity.

Summary	statistics f	or benthic s	samples co	llected 2 N	fay 2001. I	Broadway	outfall.		
Station	No. of Taxa	Number of Individuals	Shannon logE	Shannon loglO	Shannon 1082	Pielou	Margalef	Simpson	Gini
2-935	7	16	1.60	0.69	2.31	0.82	2.16	0.208	0.792
3-936	8	53	0.78	0.34	1.12	0.37	1.76	0.688	0.312
4-937	3	6	1.01	0.44	1.46	0.92	1.12	0.267	0.733
5-938	5	10	1.42	0.62	2.05	0.88	1.74	0.200	0.800
6-939	3	12	0.57	0.25	0.82	0.52	0.80	0.682	0.318
7-940	12	96	1.63	0.71	2.36	0.66	2.41	0.277	0.723
8-941	1	17	0.00	0.00	0.00	na	0.00	1.000	0.000
Total	23	210	1.85	0.80	2.67	0.59	4.11	0.249	0.751
Summary	statistics	for benthic	samples co	ollected 14	August 20	02. Broads	vay outfall.		
Station	No. of Taxa	Number of Individuals	Shannon logE	Shannon loglO	Shannon 1082	Pielou	Margalef	Simpson	Gini
2-935	7	212	0.64	0.28	0.93	0.33	1.12	0.685	0.315
3-936	4	6	1.24	0.54	1.79	0.90	1.67	0.200	0.8
4-937	4	11	0.89	0.38	1.28	0.64	1.25	0.509	0.491
5-938	1	1	0.00	0.00	0.00	na	na	na	na
6-939	5	64	0.98	0.42	1.41	0.61	0.96	0.454	0.546
7-940	na	na	na	na	na	na	na	na	na
8-941	0	0	na	na	na	na	na	na	na
Total	21	294	3.75	1.62	5.41	2.48	5.00	1.85	2.15

Table 12. Results of the macroinvertebrate samples in 2001 and 2002 (See Figure 2 for sampling locations).

Macroinvertebrates in the sediments were not sampled again until May 2004 and August 2004 to coincide with the same months as previous sampling events (Table 13). The results are quite different from the earlier sampling dates. In the two years since construction of the CDS unit and pond, a tremendous increase is measured in the number of taxa and the number of individuals as well as in the species diversity indices, even though two stations downstream from the pond have been eliminated making fewer sampling sites. Although variation between sampling dates is expected the lower number of taxa and individuals in August may be the result of the summer of intense hurricane activity. Also fewer taxa are found near the inflow of the pond.

Summary s	tatistics f	or benthic s	amples co	llected M	ay 2004. H	Broadway	outfall		
Station	No. of	Number of	Shannon	Shannon	Shannon				
	Taxa	Individuals	logE	log10	log2	Pielou	Margalef	Simpson	Gini
2-936	7	400	1.02	0.44	1.47	0.52	1.00	0.471	0.529
3-937	11	3716	1.20	0.52	1.72	0.50	1.22	0.425	0.575
4-938	20	3344	1.41	0.61	2.03	0.47	2.34	0.362	0.638
5-939	18	1446	1.34	0.58	1.93	0.46	2.34	0.371	0.629
5-939	12	1312	1.24	0.54	1.79	0.50	1.53	0.397	0.603
Total	68	10218	6.20	2.69	8.94	2.45	8.43	2.03	2.97
Summary s	tatistics f	or benthic s	amples co	llected Aı	1gust 2004	. Broadw	ay outfall		
Station	No. of	Number of	Shannon	Shannon	Shannon				
	Taxa	Individuals	logE	log10	log2	Pielou	Margalef	Simpson	Gini
2-936	3	4864	0.58	0.25	0.83	0.53	0.24	0.697	0.303
2-936	6	190	1.42	0.62	2.05	0.79	0.95	0.306	0.694
4-937	13	1024	0.52	0.22	0.75	0.20	1.73	0.805	0.195
5-938	8	1322	0.59	0.26	0.85	0.28	0.97	0.737	0.263
6-939	12	934	1.05	0.46	1.52	0.42	1.61	0.471	0.529
Total	42	8334	4.16	1.81	6.00	2.23	5.50	3.02	1.98


Table 13. Results of the macroinvertebrate samples in 2004 (See Figure 2 for sampling locations).

CHLOROPHYLL

Chlorophyll is a photosynthetic pigment used extensively to estimate phytoplankton biomass. All green plants contain chlorophyll *a*. Other pigments that occur in phytoplankton include chlorophylls *b* and *c*. The degradation product, pheophytin, is a measure of algal remains (Kadlec and Kinght 1996). Chlorophyll *a* concentrations are strongly associated with other water quality parameters, such as, transparency, turbidity, total phosphorus and total suspended solids. This relationship is one of the most often used parameters to develop trophic state indices for water bodies. Chlorophyll measurements are useful indicators of the phytoplankton population and provide insight into the primary productivity and ecology of lakes, rivers and estuaries. Phytoplanktons are usually single-celled microscopic organisms and live suspended in the water column. They are essential to life and form the basis of the food chain. But

too much phytoplankton creates eutrophic conditions and can cause loss of species diversity and turbid conditions.

Samples for chlorophyll analysis were collected at the site to characterize the water (Figure 26 and Appendix L). The various types of chlorophyll were measured in the order shown in the table beneath the figure. Samples were collected once before the monitoring began in 2002 and not again until 2004-05 when they were collected on a bi-monthly schedule. Not all locations were sampled each time, but the laboratory results give an indication of conditions in the system. Very low concentrations of chlorophyll were measured in the pipe before and after the CDS unit. This is not surprising since sunlight is necessary for phytoplankton growth. Once the water entered the pond, there is a gradual increase in concentrations until the water flows under the bridge limiting sunlight again and slightly reducing chlorophyll content in the water column. From the table in Appendix L, it is evident, that chlorophyll concentrations are higher in summer than winter and that most of the samples were collected during summer months, so this probably is not a fair comparison for assessing trophic state.

Figure 26. Averaged chlorophyll values for the eight sampling events conducted at different locations in the Broadway Outfall CDS/Pond system.

COLIFORM BACTERIA

Both fecal and total coliform bacteria was measured at high concentrations in the pipe before the CDS and after leaving the CDS, but the pond appears to reduce these high levels to acceptable concentrations (Table 14). The concentrations measured in the pipe greatly exceed the concentrations considered safe for fish and wildlife or human

contact. If these few scattered results are any indication, the pond reduces these concentrations to acceptable levels. Even the CDS unit appears to reduce concentrations to some extent. The high concentrations in the pipe are possibly caused by septic tank infiltration, sewer cross connections, pet droppings or the stagnant conditions in the pipe. Stagnant conditions are conducive to bacterial growth. Fecal microorganisms accumulate in sediments where survival is extended from weeks to months (Burton and Pitt 2002).

Table 14. Coliform bacteria concentrations traveling from in front of the CDS (FLO
934) through the pond system to the outflow (FLO 939). See Figure 2 for sampling
locations.

TOTAL COLIFORM COLONIES (cfu/100 ml)						
	FLO 934	FLO 935	FLO 937	FLO 939		
8/14/2002	na	8,000	2,700	2,200		
2/4/2003	8,000	4,200	na	540		
12/1/2004	60,000	60,000	3,900	na		
1/19/2005	5,400	5,200	6,200	2,400		
3/28/2005	46,000	60,000	60,000	500		
4/26/2005	12,000	20,000	4,500	na		
5/23/2005	20,000	17,000	4,000	na		
6/27/2005	19,000	6,500	4,000	na		
8/15/2005	12,500	10,000	11,000	na		
10/12/2005	52,000	36,000	38,000	na		
Average	26,100	22,690	16,450	1,410		
Median	19,000	13,500	4,500	1,370		

FECAL COLIFORM COLONIES (cfu/100 ml)						
	FLO 934	FLO 935	FLO 937	FLO 939		
8/14/2002	na	6,300	460	280		
2/4/2003	20	30	na	70		
12/1/2004	32,800	28,600	226	na		
1/19/2005	1,260	540	160	140		
3/28/2005	35,000	35,000	2,300	90		
4/26/2005	3,100	1,700	600	na		
5/23/2005	6,400	3,100	600	na		
6/27/2005	2,000	3,000	750	na		
8/15/2005	8,400	10,400	2,400	na		
10/12/2005	8,000	4,200	400	na		
Average	10,776	9,287	930	145		
Median	6,400	3,650	600	115		

*Values shown in red were too numerous to count and 60,00 was substituted as the highest number that probably could be counted. The actual average would probably have been higher. *Values shown in red were too numerous to count and **35,000** was substituted as the highest number that probably could be counted. The actual average would probably have been higher.

Although there are wide fluctuations between sampling dates as indicated by the large difference between averaged and median values, standards are greatly exceeded in the pipe and the pond, but standards are usually met in the discharge water from the pond. According to the standards for class III waters using membrane filtration (MF) in units of cfu's/100 ml, fecal coliform counts shall not exceed an average value of 200 or must be less than 400 in 10 percent of monthly samples or less than 800 on any one day. The samples in the pipe greatly exceed these criteria, but the few samples taken at the outflow of the pond usually meets the standard for fecal coliform. The same pattern holds true for total coliform with samples in the pipe and the pond exceeding standards, but in this case standards are also slightly exceeded in the water discharged from the pond. For total coliform, concentrations must not exceed 1,000 as a monthly average, or less than 1,000 in 20 percent of samples or less than 24,000 on any day.

THE END OF THE NARRATIVE

SUMMARY OF RESULTS

HYDROLOGY (Appendices B and C)

- Rainfall was above its normal amount of 52 inches per year during the three years of the study (Figure 4). Year three had the least amount of rainfall (58 inches), but it was still above the long term average. Table 4 reveals that the rainfall characteristics for the three years show similar patterns. Also of note, during the summer of year two, three hurricanes swept through the region increasing average rainfall amount and storm duration, but not median rainfall values.
- Even for rain amounts as small as 0.21 inches, some of the storm flow bypasses the CDS unit (Figure 5). Greater than 25 percent of all base flow is attributed to a daily pulse of water. Except when obscured by rain events, it occurs for about three to four hours between 14:00 and 17:30 each day (Figure 5).

STORM FLOWS (Appendix D)

- The individual hydrographs were useful for analyzing characteristics of the system. In the Broadway Outfall drainage basin, flow occurs almost immediately after the first raindrop hits the ground indicating the efficiency of the underground pipe collection system to rapidly remove runoff from the drainage basin (Figure 6)
- Water budget calculations estimated that between ten and thirteen million cubic feet of flow passed through the system during each year of study (Table 5). The error term was small when compared to total inflows or outflows for each year: 2 percent in 2002-03, 9 percent in 2003-04 (broken pipe problems) and less than 1 percent in 2004-05. A quick assessment of the data shown in the water budget in Table 5 calculated runoff coefficients for the 132-acre drainage basin for the three years of data collection as 0.25 for year one, 0.33 for year 2 and 0.31 for year three.

WATER QUALITY (Appendix E)

- The CDS unit does not consistently change any of the constituents in the water column (Figures 7-10, Table 6). This should be no surprise since it is designed to remove gross pollutants not the suspended or dissolved pollutants in the water column.
- Most of the nitrogen species exhibit only small differences between the inflow and the outflow of the CDS unit, although there is often a large difference after water has traveled through the pond (Figure 7 and Table 6).
- Organic nitrogen concentrations usually increased in the pond for both base flow and storm flow (Figure 7 and Table 6). One explanation for the increase of both organic nitrogen and ammonia may be the vegetation that was planted and subsequently uprooted by strong storm surges. In addition, grass clippings and other organic debris were introduced into the pond each time the side bank was mowed.
- Nitrate showed a modest reduction in the CDS unit during storm events, and a much better reduction in the pond (Figure 7 and Table 6).
- Ortho-phosphorus, the most available chemical form, was slightly reduced in the CDS unit during most years (Figure 8 and Table 6).
- Even though wetlands are often effective in removing phosphorus, there was most often a net increase in phosphorus concentrations after it flowed from the CDS unit through the pond (Figure 8 and Table 6).

- An insignificant change in TSS occurred in the CDS unit. The TSS concentrations are not high at this site (average 12-30 percent-mg/l) (Figure 9 and Table 6) and the CDS unit is only designed to remover large size particles.
- In general, metal concentrations are much lower in base flow than in storm flow and concentrations are measured over twice as high during the third year in storm flow (Figure 10). The exception is copper. Lead is not discussed since almost all concentrations were below the laboratory limit of detection.
- Dissolved metals as a percentage of total concentrations in storm flow averaged about 50 percent for zinc, 37 percent for copper and 20 percent for iron (Figure 11 and Table 7).

FIELD PARAMETERS (Appendix F)

- Dissolved oxygen and pH are measured lower at the inflow of the pond because water has recently been discharged through the CDS unit, which is a dark anaerobic environment. The concentrations are higher and the fluctuations greater at the outflow once plants and animals in the pond ameliorate conditions (Figure 12) Rainfall decreases the diurnal fluctuations, especially near the inflow of the pond. This effect is caused by rainfall and runoff flowing into the pond and diluting the pond water before reaching the outflow (Figure 12)
- Conductivity (specific conductance) usually decreased with rainfall input, because rainfall has low conductivity, and then slowly increases between storms as evapotranspiration and other processes increase ion concentrations. The effect is more obvious at the inflow where stormwater has had less time to mix with pond water (Figure 12)
- Dissolved oxygen (DO) showed only weak seasonal patterns, but the averaged values were much higher in February of 2005 caused by a cold front passing through the area. Normally DO is increased in winter because oxygen is more soluble in colder water (Table 8).
- Dissolved oxygen and percent saturation are measured about 50 percent higher at the outflow of the pond than at the inflow caused by the anaerobic water discharged into the pond through the CDS unit. The higher concentration at the outflow is caused by algae photosynthesis that can raise DO during the day to high supersaturated conditions (> 12 mg/l) which then drop to low levels (< 4 mg/l) at night (Table 8).
- Specific conductance is a measure of the total concentrations of ionized materials at the sampling site and was measured within the upper range for natural systems. The specific conductance of most natural inland surface waters is between 0.01 and 0.3 mS/cm (Table 8).

GROSS SOLIDS (Appendices G, H and I)

- Year one and year three data indicate that February through April produce the most collected material in the CDS unit, this was not true for year 2 when the unit also filled up during the summer rainy season. Of some interest is that during the summer of intense hurricanes, no material was collected (Figure 13).
- When the gross solids (the solid bars in Figure 14) are compared for the four cleanout events, year 3 exhibits significantly greater concentrations of pollutants and in almost all cases the sieved samples have higher concentrations than the sample analyzed without sieving (a whole sample).
- Concentrations of Polycyclic Aromatic Hydrocarbons (PAHs) collected by the CDS unit were always measured higher than the possible toxic level (> 1,600

ug/kg) and also greatly exceeded the probable toxic level (> 23,000 ug/kg) (Figure 14).

- Our concern about losing sediment from the samples collected by the Ekman dredge appears justified. Only about 55 percent of the sample was sorted out in the largest size fraction (leaves) at site C compared to 70 to 80 percent of the samples collected by the dredge (Figure 15c).
- Significant differences in concentrations for the same sample of material collected by the CDS unit were measured by two different labs and some sample collection schemes are suggested to correct this problem (Table 9, Figures 16, 17, 18, 19, and page 46).
- Samples A and B taken inside the CDS unit at time of cleanout sometimes show higher concentrations in Sample B, especially for zinc and copper. The only distinct pattern is for TKN in the largest particle size which mostly consists of leaves; while metals tend to be measured at their lowest concentrations in this largest size fraction (Figure 20).
- The amount of litter collected by the CDS unit during each cleanouts reported was quite small (6 to 17 ft³) compared to the amount of leaves and sediments removed from the CDS unit (182 ft³ to 260 ft³) Plastics were measured more often than any other litter category, but Styrofoam was also found in large quantities (Table 10)

SEDIMENT ANALYSIS (Appendix J)

- PAHs were detected at toxic levels at this site in both the gross solids collected by the CDS unit and in the sediments before the retrofit. A summary graph of the total PAHs measured in the sediments is shown in Figure 22.
- The data show that ditches are a good mechanism for removing both PAHs and metal concentrations in the sediments as water flows through the system and perhaps better designs might solve some urban water pollution problems (Figures 22 and 23).
- When the pre-construction PAH soil samples collected in July 2001 near where the storm sewer pipe entered the ditch are compared to the samples collected in the CDS unit in April 2003, concentrations are similar (Table 11). This indicates that these toxic levels of hydrocarbons that were previously released to the environment are now removed from the flow stream and disposed of in a location where they can no longer contaminate a water body.

MACROINVERTEBRATES (Appendix K)

- Macroinvertebrate samples were taken in the ditch before the pond was constructed in May 2001, and samples were collected again in August 2002 one year after construction of the pond (Table 12). Although similar numbers of taxa and individuals were collected for both sampling dates, the samples taken at station 935 after the construction shows a much larger number of individual at the inflow to the pond immediately after discharging from the CDS unit.
- In the two years since construction of the CDS unit and pond, a tremendous increase is measured in the number of taxa and the number of individuals as well as in the species diversity indices, even though two stations downstream from the pond have been eliminated making fewer sampling sites (Table 13).

CHLOROPHYLL (Appendix L)

 Very low concentrations of chlorophyll were measured in the pipe before and after the CDS unit. This is not surprising since sunlight is necessary for phytoplankton growth. Once the water entered the pond, there is a gradual increase in concentrations until the water flows under the bridge limiting sunlight again and slightly reducing chlorophyll content in the water column (Figure 27).

COLIFORM BACTERIA (Appendix M)

• Both fecal and total coliform bacteria was measured at high concentrations in the pipe before the CDS and after leaving the CDS, but the pond appears to reduce these high levels to acceptable concentrations (Table 14).

CONCLUSIONS

The monitored CDS unit, though undersized, is effective for removing gross solids from the storm water flow stream, but is less successful in removing the dissolved and suspended constituents typically measured with automatic samplers in most stormwater studies. The CDS unit removed toxic levels of PAHs. The CDS unit effectively removed polluted material that would have caused long-term detrimental effects by re-suspension of bottom sediments, leaching out of sequestered pollutants, smothering of benthic habitat and other problems associated with sediment transport.

CONCLUDING REMARKS

Although the CDS unit proved to be effective, a few modifications were noted that could make the units even better. We noticed that the floating litter was flushed back into the pipe (the A side of the diversion weir (sta. 934)) during base flow as the material circulated in the unit. A flapper valve of some sort that prevents back flow could solve this problem.

One of the biggest problems during cleanout was how to keep the base flow water out of the unit. Some method need to be devised for easily closing off the CDS unit entrance, and probably the exit as well, so that the polluted water in the CDS unit does not have to be continually decanted out of the unit creating a disposal problem.

Maintenance is a continuing responsibility for local governments. The units need to be visited at least once a month to determine if the screens are clogged, to make certain the unit is working properly and to skim off the collected floatables.

Landscape maintenance in the area around the pond killed much of the vegetation in the littoral zone and on the 4:1 slopes surrounding the pond that was planted to intercept runoff into the pond and provide wildlife habitat. Grass clippings found floating in the pond appeared to be a recurring problem.

Standardized methods need to be established for analyzing gross solids. Some recommendations to improve sampling techniques are suggested on page 44 of this document.

REFERENCES

Agency for Toxic Substances and Disease Registry (ATSDR). 2001. Polycyclic Aromatic Hydrocarbons (PAHs). <u>http://www.atsdr.cdc.gov/ToxProfiles/phs8806.html</u>

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1985, Standard Methods for the Examination of Water and Wastewater, 17th Edition. American Public Health Association, Washington, DC

Chamie, J. P. M. and C. J. Richardson. 1978. Decomposition in Northern Wetlands. Pp. 115-130. in R. E. Good, D. F. Whigham, and R. L. Simpson (eds), Freshwater Wetlands: Ecological Processes and Management Potential. Mic Press, New York, NY.

DePinto, J. V., T. C. Young, and S. C. Martin. 1980. Aquatic Sediments. Journal of water Pollution control Federation 52(6):1656-1670.

Gambrell, R. P. and W. H. Patrick, Jr. 1977. Chemical and Microbiological Properties of Anaerobic sorts and Sediments. Plant Life in Anaerobic Environments R.M.M. Crawford (ed) Ann Arbor Science Publishers, Ann Arbor, Michigan.

Grabe, S. A. and J. Barron. 2003. Sediment Contamination, by Habitat, in the Tampa Bay Estuarine System (1993-1999):PAHs, Pesticides and PCBs. In Environmental Monitoring and Assessment 00:1-40, 2003. Kluwer Academic Publishers, Netherlands.

Harper, H. H. 1994. Stormwater Loading Rate Parameters for Central and South Florida. Environmental Research & Design, Inc. 3419 Trentwood Blvd., Suite 102, Orlando, FL 32812.

Heaney, J. P. 1978. Nationwide Assessment of Receiving Water Impacts from Urban Storm Water Pollution. Environmental Engineering Sciences, University of Florida, Gainesville, Florida.

Livingston, E. H. and E. McCarron. 1990. Stormwater Management: A Guide for Floridians. Florida Department of Environmental Protection, 2600 Blair Stone Road, Tallahassee, FL 32399.

Kadlec, R. H. and R. L. Knight. 1997. Treatment Wetlands. Lewis Publishers, New York, NY.

Minton, G.R. 2005. Stormwater Treatment:Biological, Chemical, and Engineering Principles. Resource Planning Associates, Seattle, Washington, USA.

Florida Department of Environmental Protection (FDEP) Accessed 2003. Development and Evaluation of Numerical Sediment Quality Assessment Guidelines for Florida Inland Waters. Technical Report.

http://www.dep.state.fl.us/water/monitoring/docs/seds/SQAGs/

Helsel, D.R. and R.M.Hirsch. 1995. Statistical Methods in Water Resources. Elsevier Science Publishers B.V., Amsterdam, The Netherlands.

Moore, J. W. 1991. Inorganic Contaminants of Surface Water: Research and Monitoring Priorities. Springer-Verlag, New York, NY.

National Oceanic and Atmospheric Administration (NOAA). 1999. Sediment Quality Guidelines Developed for the National Status and Trends Program. http://response.restoration.noaa.gov/cpr/sediment/sediment.html

Odum, H.T. 1983. Systems Ecology: An Introduction, John Wiley & Sons, Inc., NY.

Pitt, R. E. 1995. Biological effects of Urban runoff Discharges. *In* Stormwater Runoff and Receiving Systems: Impact, Monitoring, and Assessment. E.E.Herricks (ed). Lewis Publishers, New York.

Randall, C. W., K. Ellis, T. J. Grizzard and W. R. Knocke. 1982. Urban Runoff Pollutant Removal by Sedimentation: Pages 205-218 in W. DeGroot (ed), Proceedings of the Conference on Stormwater Detention Facilities. American Society of Civil Engineers. New York, NY.

Reddy, K. R. and W. H. Patrick. 1984. Nitrogen Transformations and Loss in Flooded Soils and Sediments. CRC Crit. Rev. Environ. Control 13:273-309.

Richardson, C. J., D. L. Tilton, J. A. Kadlec, J. P. M. Chamies, and W. A. Wentz. 1989. Freshwater Wetlands: transformers, Filters, or Sinks? Pp. 25-46 In r. R. Sharitz and J. W. Gibbons (eds) Freshwater Wetlands and Wildlife, Oak Ridge, TN. U. S. Department of Energy. CONF – 8603101.

Rushton, B. T., D. Huneycutt and K. Teague. 2004. Characterization of Three Stormwater Ponds. Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609.

Rushton, B. T. 2002. Treatment of Stormwater runoff from an Agricultural Basin by a Wet-Detention Pond in Ruskin, Florida.

Rushton, B. T., C. Miller, C. Hull, and J Cunningham. 1997. Three Design Alternatives for Stormwater Detention Ponds. Southwest Florida Water Management District, 2379 Broad Street, Brooksville, FL 34609.

Sprenger, M. and A. McIntosh. 1989. Relationship Between Concentrations of Aluminum, Cadmium, Lead and Zinc in Water, Sediments, and Aquatic Macrophytes in Six Acidic Lakes. Archives of Environmental Contamination and Toxicology 18:225-231.

Stenstrom, M. K. and Sim-Lin Lau. 1998. Oil and Grease Removal by Floating Sorbent in a CDS Device. <u>www.stormwater-resources.com</u>

U. S. Environmental Protection Agency (USEPA) 1973. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents, Report 670/4-73-001. U.S.EPA Washington, DC

U.S. Environmental Protection Agency (USEPA) 1998. The Quality of our Nation's Water. EPA841-S-00-001. <u>http://www.epa.gov/305b/98report/98brochure.pdf</u>

U.S. Environmental Protection Agency (USEPA). 2000. Ambient Water Quality Criteria Recommendations: Nutrients Ecoregion XII. EPA 822-B-00-021.

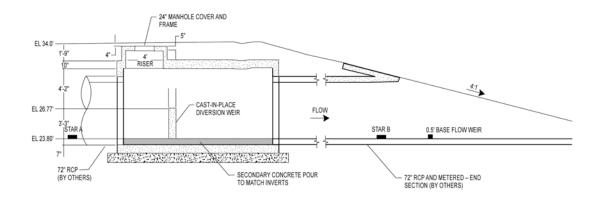
U.S. Environmental Protection Agency (USEPA). Accessed 2006. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. <u>http://www.epa.gov/waterscience/cs/collection.html/</u>

Wetzel, R. G. 1975. Limnology.W.B. Saunders. Philadelphia, PA.

Wilhm, J.L. 1979. Range of Diversity Index in Benthic Macroinvertebrate Populations. J. of the Water Pollution Control Federation 42:R221-R224.

Wong, T. H. F., R. M Wootton and D. Fabian. 1996. A Solid Separator Using a Continuous Deflective System. Proceedings of the 7th International Conference on Urban Stormwater Drainage. Hannover, Germany, Vol. 2:881-886.

Wilber, W. G. and J. V. Hunter. 1980. The Influence of Urbanization on the Transport of Heavy Metals in New Jersey Streams. Water Resources Research Institute, Rutgers University, New Brunswick, New Jersey.


APPENDIX A

INFORMATION FOR METHOD SECTION

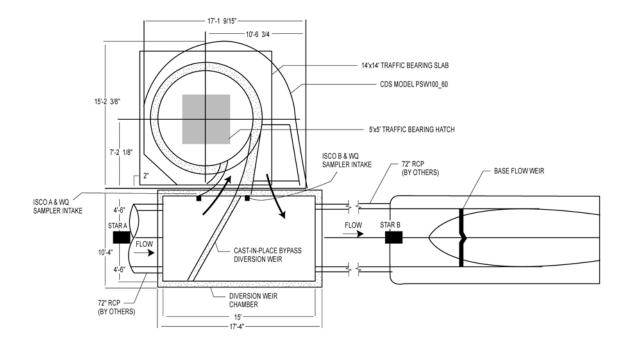

Weir dimensions and formulas and water quality assurance information

Figure A-1 Broadway Outfall Project Area (1995 Orthoquad Base) Drainage basin outlined in blue and the project site is outlined in green.

Side view showing location of sensors before and after the CDS unit.

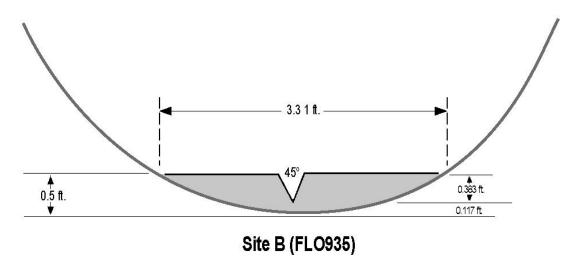

Plan view showing location of sensors, diversion weir, CDS unit, base flow weir and other features of the inflow pipe at Broadway Outfall.

Figure A-2. Dimensions of CDS unit design plan showing sensor locations.

Broadway

Flow Calculations

INFLOW – Base Flow V Notch Weir

Figure A-3. Base flow weir installed in inflow pipe. *Low flows:*

For levels less than 0.6 feet, the velocity sensor does not read correctly and the base flow formula is used to calculate flow using water level measured by the ISCO B and/or the STAR B level sensor with an aluminum weir and appropriate formulas (see Figure 2 for location of sensors).

The V-notch weir equation is used for free flowing water levels in the pipe that are less than 0.5 feet. It takes the form:

 $Q = K^*H1^{2.5}$

Where: Q (cfs) = flow rate H1 (feet) = head on weir = water level-0.117 feet K = a constant, dependent on the angle of notch (1.035 for 45° cfs)

For heads greater than 0.383 feet and less than 0.6 feet, a rectangular weir without end contraction formula was used and added to the maximum flow for the V-notch (max flow for V-notch=0.10 cfs):

 $Q = K^*L^*H2^{1.5}$

Where:Q (cfs) = flow rate H2 (feet) = head above V-notch = H1-0.383 L (ft) = Crest of weir (3.31 feet) K = constant = 3.33 for cubic feet per second (cfs)

PIPE FORMULA: Storm Flow:

For storm flows greater than 0.7 feet, the STAR velocity meter multiplied by the area of the pipe for that level (d) was used to calculate flow. Three different formulas were tried for calculating the area of the pipe for different levels and they all gave the same results, so we used the one below developed by Mike Beach:

A $(ft^2) = (D/2)^2 * \arccos(1-2d/D) - (D/2-d) * \operatorname{sqrt}(d(D-d))$

Where:

A (ft^2) = area of pipe at water depth d D = diameter of pipe (ft) d = depth of water (ft)

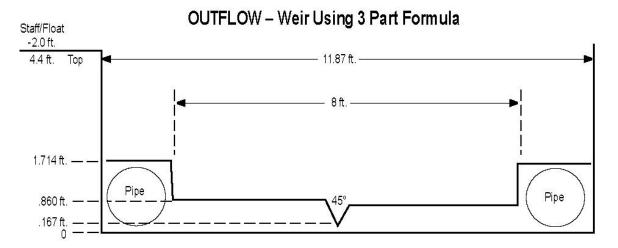
Storm Flows that bypass CDS unit:

Storm flows that bypassed the CDS unit were calculated using the water level measured at site A with the ISCO A level sensor (see Figure 2 and 3 for location of sensors).

A rectangular weir without end contractions was located between the inflow and outflow of the CDS unit (see Figure 3). A sharp crested aluminum plate was attached to the top of the cast-in-place bypass diversion weir to improve flow calculations.

The formula used for calculating the flow that bypassed the CDS unit is;

$$Q = K^*L^*H^{1.5}$$


Where:

Q = flow (cfs)L = length of weir = 10.33 ft H = head (ft) = water level above weir crest Weir crest = 3.5 feet above water level at station A

Problems associated with measurements:

- The height of V-notch was not greater than 2 times the head
- Heads were most often not 0.2 feet over weirs
- Base flow weir did not always spring free because of low heads
- Snails and other debris often clogged V-notch

Outflow:

Figure A-4. Dimensions of outflow weir at Sta 939.

The outflow required a three-part formula to estimate flow out of the pond. The two pipes in the diagram above divert water that would have come into the pond immediately above the outflow weir but are now discharged below the weir.

For base flow, flow was measured through the 45° V-notch using the following formula:

$$Q = K^* H 1^{2.5}$$

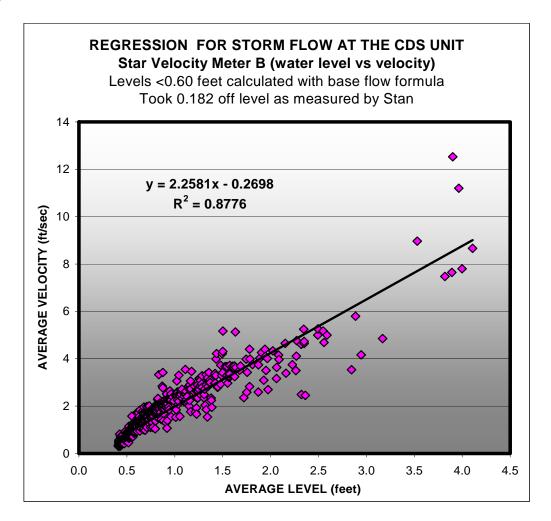
Where:

e: Q (cfs) = flow rate H1 (feet) = head on weir = water level-0.117 feet K = a constant, dependent on the angle of notch (1.035 for 45° cfs)

For heads greater than 0.860 feet, a rectangular weir with end contractions formula was used and added to the maximum flow (for the V-notch > 0.86 = 0.7 cfs and for flow > 1.714 max flow = 24 cfs):

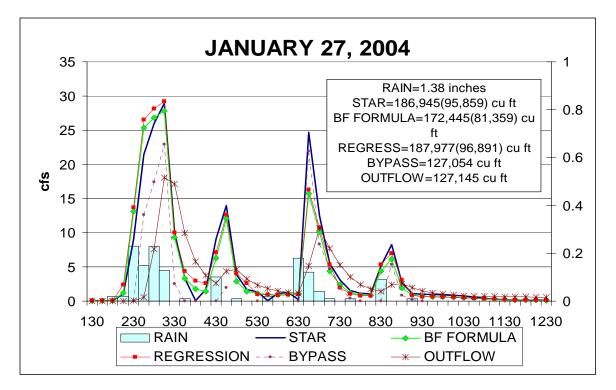
 $Q = K^*(L-0.2 H2)^*H2^{1.5}$

Where:Q (cfs) = flow rate H2 (feet) = head above V-notch = H1-0.860 L (ft) = Crest of weir (8 feet) K = constant =3.33 for cubic feet per second (cfs)


Flow above 1.714 ft occurred rarely and used the formula above with:

H2 = H1 - 1.714

L = 11.87 feet


Regression Equation to estimate flow at Sta. 935:

The Star velocity meter became inoperable in February 2004. An old Marsh McBirney velocity meter was altered to measure the flow that left the CDS unit, but it failed to record correctly during most rain events. A regression equation was calculated using the data from the first year. This equation was used to estimate flow and to verify flow measurements when there was a question about their validity. Almost 800 data points were used to estimate the equation. Only values greater than 0.60 feet were used in the equation and lower flows were calculated using the base flow weir equation. The regression equation is shown below:

Figure A-5. Regression equation developed to estimate flow once velocity meter became inoperable. It also corrected for sensor drift experienced in final 18 months of study.

The STAR velocity meter stopped recording correctly during February 2004 and several methods were used to try to estimate flow including the regression equation shown above in Figure A-5. Comparisons for some of the results are shown in Appendix D and an example with the appropriate formulas is shown below.

Figure A-6. An example of flows compared to sensors installed at the site. All calculations use the base flow weir formula for low flows because velocity meters are unable to read low flows.

Abbreviations used in formulas:

HT=Level from bottom of pipe (actual height of water in pipe) h=head of water going through V-notch of base flow weir or over top of weir.

BF FORMULA: Derived from base flow weir formula using the top of weir as a rectangular weir without end contractions and adjusting for the changing length of weir as pipe diameter changes (Figure A-7). The 0.1 add on is for max flow thru v-notch. Formula under estimates flow when water level in pipe is over half full (3 ft)

Flow=(h^1.5)*3.33*(1.3095*ln(h)+4.5338)+0.1

REGRESS: A regression equation developed for velocity using water level during a year when the velocity meter was reading correctly. The velocity was then multiplied by pipe area (see previous pipe formula area).

Flow=(2.2581*HT)-0.2698

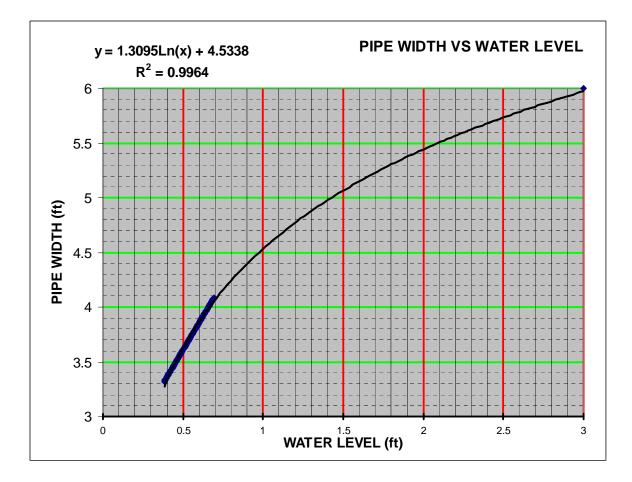
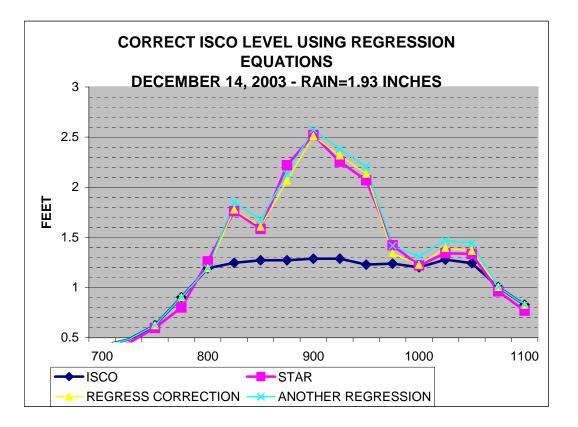



Figure A-7. A unique length of weir had to be calculated for each water level in the round 6 ft pipe and was used in the BF formula described above. On those rare occasions when the level in the pipe was greater than three feet, the cross sectional area was not correct and the REGRESS equation was more accurate.

Figures A-8. The ISCO level B meter often had difficulty measuring high flows as shown in this example. This always occurred when water was also discharging over the bypass weir. Several regression equations comparing Level A (before the CDS) with ISCO level B (after the CDS unit) were developed to correct for this problem once the Star sensors ceased to work. This is one example of making the level correction using the regression equations in Figure A-9.

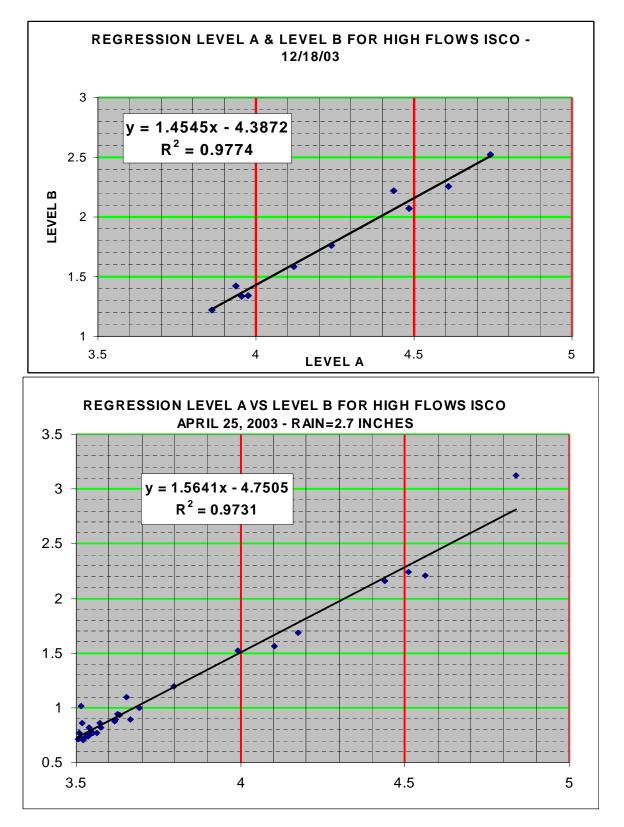
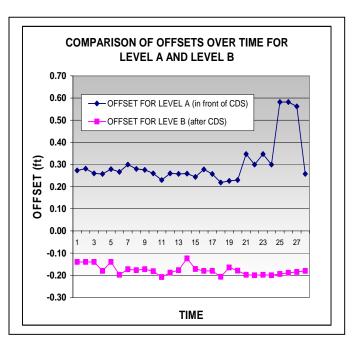



Figure A-9. Regression equations to correct for ISCO B (after CDS unit) levels when it was obviously not reading correctly.

Table A-1. Testing sensors for drift and developing offsets to make corrections for flow and level measurements. Errors in accurately reading staff gauges caused some of the minor variations.

DATE	LEVEL A	LEVEL B
14/18/2005	0.273	-0.140
4/15/2005	0.281	-0.140
4/19/2005	0.260	-0.140
4/25/2005	0.257	-0.180
4/26/2005	0.279	-0.140
4/29/2005	0.267	-0.198
5/2/2005	0.300	-0.173
5/4/2005	0.280	-0.177
5/12/2005	0.276	-0.173
5/23/2005	0.260	-0.182
5/25/2005	0.230	-0.208
6/5/2005	0.260	-0.188
6/7/2005	0.258	-0.177
6/13/2005	0.259	-0.124
6/15/2005	0.244	-0.172
6/24/2005	0.278	-0.180
6/27/2005	0.257	-0.180
7/11/2005	0.219	-0.207
7/13/2005	0.226	-0.165
7/14/2005	0.230	-0.179
8/1/2005	0.347	-0.198
8/11/2005	0.300	-0.200
8/1/2005	0.347	-0.198
8/11/2005	0.300	-0.200
8/15/2005	0.582	-0.194
8/17/2005	0.582	-0.189
8/19/2005	0.562	-0.185
9/16/2005	0.258	-0.180

EXAMPLE OF METHOD USED TO COLLECT SAMPLES IN SUMP FOR CDS UNIT.

Preparation to collect sample prior to sampling day

Obtain sample bottles and chain of custody from laboratory Coordinate with sampling team and agree on date(s) Make copies of chain of custody forms Get supplies together such as extra pens, labels, log book etc Collect sampling equipment and store in one place Gloves Paper towels Lab pads Ethanol DI water Containers for mixing samples. Note restrictions on containers*. Scoops and shovels Leatherman Measuring container (2 liter one worked for us) Sampling equipment such as Ekman Dredge, soil corer, pool skimmer Locate coolers to store samples Obtain UPS shipping label for coolers Wash sampling equipment Wash with liquinox and rinse 3X tap water & 3X DI water Rinse with ethanol Place on lab pads to air dry

Obtain mesh bags for storing litter until it is sorted Make arrangement for vehicle & vacuum truck Do a dry run with equipment if method is not yet perfected Make table to convert measurement to volume measurements

Making measurements in the sump

Seal off entrance and exit of unit from any base flow

Appoint a recorder to take field notes and to make certain all tasks completed correctly Have field sample containers* (different from lab sample bottles)

Remove floatables from the unit and set aside to air dry and measure later

Measure to the top of material in sump and estimate volume from table

Take water quality sample in sump

Decant water from the sump

Measure to the top of material in sump and estimate volume from table for calculations Take sample of material (about 2 liters) using ekman dredge or other suitable equipment Package, label and store on ice in appropriate containers until composited together later Make field notes

Make visual estimate of how much material collected in each category – (percent sediment, percent foliage, and percent litter) and record in field journal

Take duplicate sample on opposite side of unit and repeat previous four steps Have vacuum truck remove material in sump

Take samples of material in sump at appropriate intervals by the above method (we did five levels about 1.25 feet apart)

Preparation of samples for lab analysis (later at office)

If samples represent different volumes of material, do calculations for ratio and determine correct percentage for each level Mix samples together in one large container using appropriate ratio Put mixture into lab bottles Repeat previous three steps for the duplicate sample Put samples in coolers Fill out the appropriate paper work Mail to the lab using their instructions

*Depending on analysis only containers made out of certain materials can be used For example, stainless steel or glass for metals. Some plastics can't be used for PAHs.

APPENDIX B

RAINFALL CHARACTERISTICS

Table B-1. Rainfall characteristics

DATE	JDAY	Start	Inter-Event	Storm	Total Event	Ava. Int	Max. Int
DAIL	JUAI	Time	Dry Period		Rain Fall	Avg. mc	Max. III
	(JD)	(hhmm)	(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
	(50)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(nours)	(11.)	(11)	(11/11)	(11/15 1111)
12-Oct-02	285	2200		3.25	2.06	0.63	0.84
13-Oct-02	286	1615	15.00	0.50	0.04	0.08	
15-Oct-02	288	1400	45.25	3.75	0.86	0.23	
16-Oct-02	289	200	8.25	1.75	0.13	0.07	0.09
23-Oct-02	205	1715		3.25	0.62	0.19	
30-Oct-02	303	1200		1.75	0.33	0.19	
01-Nov-02	305	1315		0.75	0.06	0.01	0.02
12-Nov-02	316	1730		13.00	0.72	0.06	
16-Nov-02	320	915		22.75	1.26	0.06	
05-Dec-02	339	1945		39.75	4.97	0.13	
09-Dec-02	343	430		28.00	3.97	0.14	
12-Dec-02	346	1515		20.25	4.82	0.24	
20-Dec-02	354	615		2.25	0.50	0.24	
24-Dec-02	358	1845		7.50	2.22	0.30	
31-Dec-02	365	1815		6.00	3.63	0.61	0.44
07-Feb-03	38	900	896.25	0.75	0.04	0.05	
09-Feb-03	40	330	41.75	11.50	0.28	0.02	
10-Feb-03	41	1145		0.50	0.21	0.42	
16-Feb-03	47	1630		6.50	0.53	0.08	
22-Feb-03	53	1645		2.75	0.73	0.27	0.21
28-Feb-03	59	1430	139.00	5.25	0.32	0.06	
07-Mar-03	66	2300		2.00	0.37	0.19	
09-Mar-03	68	1900		0.50	0.04	0.08	
17-Mar-03	76	30	173.00	2.75	0.68	0.25	
17-Mar-03	76	1800	14.75	1.25	0.05	0.04	
21-Mar-03	80	345	80.50	10.50	1.61	0.15	
23-Mar-03	82	700	40.75	13.25	1.67	0.13	
27-Mar-03	86	1400	89.75	4.00	0.95	0.24	
09-Apr-03	99	215		4.50	0.19	0.04	
09-Apr-03	99	1630		0.50	0.08	0.16	
25-Apr-03	115	1830		11.25	2.70	0.24	
29-Apr-03	119	1445		1.25	0.14	0.11	0.08
30-Apr-03	120	1230		4.00	0.18	0.05	
01-May-03	121	315		7.50	0.26	0.03	
17-May-03	137	1800	391.00	1.50	0.75	0.50	
18-May-03	138	2030		1.25	0.35	0.28	
22-May-03	142	1930	93.75	3.50	0.62	0.18	
23-May-03	143	345		5.00	0.11	0.02	
05-Jun-03	156	715		2.25	0.26	0.12	
05-Jun-03	156	2100	11.50	0.75	0.10	0.13	
08-Jun-03	159	1130		0.75	0.23	0.31	0.16
09-Jun-03	160	1100		2.75	0.35	0.13	
10-Jun-03	161	1830	28.50	1.50	0.33	0.22	
11-Jun-03	15	1545		1.75	1.01	0.58	
16-Jun-03	15	1615		5.75	1.85	0.32	

Southwest Florida Water Management District, Stormwater Program

DATE	JDAY	Start	Inter-Event	Storm	Total Event	Ava. Int.	Max. Int
Drife	UDA	Time	Dry Period		Rain Fall	ring. ma	Mun III
	(JD)	(hhmm)	(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
	,	, ,		(***)		(,	
18-Jun-03	15	1115	37.50	9.00	1.66	0.18	0.26
19-Jun-03	15	1215		5.00	1.89	0.38	
20-Jun-03	15	1030		5.00	1.33	0.27	0.43
21-Jun-03	15	545		12.25	1.38	0.11	0.29
22-Jun-03	15	915		6.75	1.02	0.15	
28-Jun-03	15	2215	150.50	4.25	1.35	0.32	0.29
30-Jun-03	15	1815		4.25	0.59	0.14	0.30
04-Jul-03	185	1800		0.50	0.52	1.04	0.35
07-Jul-03	188	2330		0.50	0.18	0.36	
08-Jul-03	189	1800		0.75	0.18	0.24	
11-Jul-03	192	1430		1.25	0.46	0.37	0.37
12-Jul-03	193	1830		4.50	0.38	0.08	
13-Jul-03	194	1530		4.75	3.23	0.68	
14-Jul-03	195	2015		1.50	0.15	0.10	
17-Jul-03	198	1945		5.00	0.51	0.10	
18-Jul-03	199	1900		1.00	0.15	0.15	
20-Jul-03	201	900		3.25	0.32	0.10	
25-Jul-03	206	1415		5.25	0.11	0.02	
27-Jul-03	208	1515		1.00	0.24	0.24	
01-Aug-03	213	1230		2.25	0.50	0.22	
02-Aug-03	214	1545		6.50	1.35	0.21	0.50
04-Aug-03	216	1715		0.75	0.27	0.36	
06-Aug-03	218	1200		1.75	0.46	0.26	
07-Aug-03	219	1045		10.25	1.11	0.11	0.64
08-Aug-03	220	1345		4.00	0.21	0.05	
09-Aug-03	221	915		7.50	1.00	0.13	
10-Aug-03	222	515		6.00	0.72	0.12	
11-Aug-03	223	1115		4.00	0.05	0.01	0.02
14-Aug-03	226	1115		2.00	0.15	0.08	
16-Aug-03	228	1815		0.75	0.05	0.07	0.03
18-Aug-03	230	1245		4.00	2.99	0.75	1.28
19-Aug-03	231	1315		6.00	0.28	0.05	
20-Aug-03	232	1515		3.50	0.33	0.09	
21-Aug-03	233	1515		4.50	0.28	0.06	
24-Aug-03	236	1945		6.25	0.10	0.02	
25-Aug-03	237	1530		3.75	0.64	0.17	0.24
26-Aug-03	238	1815		3.25	0.78	0.24	
03-Sep-03	246	1445	185.25	3.00	1.37	0.46	
05-Sep-03	248	1245		5.00	0.45	0.09	
13-Sep-03	256	1745		3.00	0.82	0.27	0.40
19-Sep-03	262	1800	141.25	5.50	0.49	0.09	0.26
20-Sep-03	263	1915		1.00	0.05	0.05	
25-Sep-03	268	1200		12.50	0.50	0.04	
28-Sep-03	271	1430		4.75	0.10	0.02	
29-Sep-03	272	330		6.00	0.12	0.02	
30-Sep-03	273	2115		9.75	0.85	0.09	

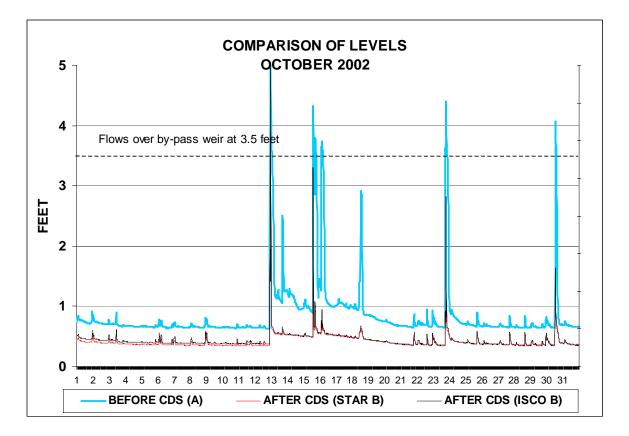
DATE	JDAY	Start	Inter-event	Storm	Total Event	Aug Int	Max. Int
DATE	JUAT	Time	Dry Period		Rain Fall	Avg. Int.	141 0X. I III
	(JD)	(hhmm)	(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
14-Oct-03	287	745	312.75	1.25	0.18	0.14	0.14
25-Oct-03	298	1715	272.25	1.00	0.21	0.21	0.19
28-Oct-03	301	1630	70.25	7.25	0.66	0.09	0.17
	SUMMARY	STATIST	ICS				
# observat	ions		93	94	94	94	94
Average			98.42	5.15	0.81	0.19	0.26
Median			45.25	3.88	0.46	0.14	0.21
std.dev.			134.50	5.95	1.01	0.18	0.28
Maximum			896.25	39.75	4.97	1.04	1.84
Minimum			4.75	0.50	0.04	0.01	0.02
TOTAL RA	IN				75.90		

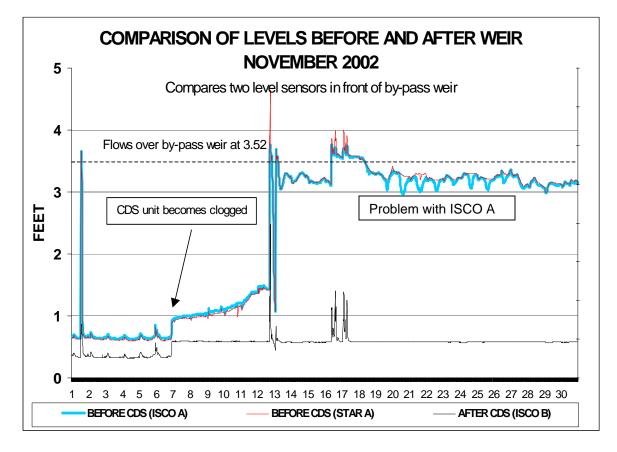
DATE	JDAY	Start	Inter-Event	Storm	Total Event	Ava Int	May Int
DAIL			Dry Period		Rain Fall	лт <u>у</u> . ш.	Max. IIIC.
		Time		•		C J)	G 14 F !)
	(JD)	(hhmm)	(hours)	(hr.)	(in)	(in/nr)	(in/15 min)
4 Nov 02	200	1715	161.75	1.00	0.10	0.40	0.13
4-Nov-03 5-Nov-03	309 310	1/15	21.75	1.00 1.25	0.18 0.5	0.18 0.40	
18-Nov-03		545	300.50	6.00	0.5	0.40	0.41
14-Dec-03		630	618.75	5.00	1.93	0.11	
18-Jan-04	18	700	835.50	8.75	1.93	0.39	0.39
19-Jan-04		1115	24.50	4.00	0.27	0.21	0.36
		200	24.50	4.00	1.38	0.07	
27-Jan-04	30	1815			0.31	0.10	
30-Jan-04			80.75	10.00			
31-Jan-04	31	1445	101.25	14.25	0.64	0.04	0.05
14-Feb-04	45 55	1400	321.00 230.75	8.50	0.35	0.04	0.05
24-Feb-04		1315		18.50	4.17	0.23	
15-Mar-04	75 76	1530	463.75	8.75	0.09	0.01	0.03
16-Mar-04		715	7.00	39.00	1.98	0.05	
11-Apr-04	102	1800	627.75	13.75	2.2	0.16	
12-Apr-04	103	1530	7.75	7.75	0.11	0.01	0.02
30-Apr-04	121	1800	426.75	4.50	2.03	0.45	0.37
3-May-04	124	845	58.25	6.75	1.11	0.16	
16-May-04	137	1600	382.00	4.00	0.24	0.06	
17-May-04	138	1600	20.00	3.75	0.45	0.12	0.15
9-Jun-04	161	1830	550.75	3.25	1.12		0.42
10-Jun-04	162	1930	21.75	2.25	1.41	0.63	
13-Jun-04	165	1730	67.75	7.50	1.13	0.15	0.40
14-Jun-04	166	1700	16.00	6.75	0.39	0.06	
15-Jun-04	167	1445	15.00	4.50	0.06	0.01	0.04
19-Jun-04	171	1715	94.00	0.75	0.09	0.12	0.05
21-Jun-04	173	1300	43.00	1.25	0.06	0.05	
24-Jun-04	176	1930	77.25	2.50	1.58	0.63	0.87
26-Jun-04	178	1645	45.25	7.00	4.20	0.60	0.91
27-Jun-04			69.25		1.45	0.26	
28-Jun-04		2000	27.25	1.00	0.35	0.35	
29-Jun-04		1730	20.50		0.52	0.09	
2-Jul-04		1445	69.25	3.00	0.50	0.17	0.40
5-Jul-04		1500	72.25	2.25	0.86	0.38	
7-Jul-04		1200	42.75	0.50	0.10	0.20	
12-Jul-04		1730	125.00	7.00	1.70	0.24	0.60
15-Jul-04		1215	66.00	2.00	0.12	0.06	
16-Jul-04		145	11.50	3.00	0.21	0.07	0.09
16-Jul-04		1330	8.75	8.00	0.87	0.11	0.21
17-Jul-04		600	8.50	5.50	0.31	0.06	
18-Jul-04		415	16.75	12.50	1.63	0.13	
19-Jul-04		130	8.75	36.25	3.68	0.10	
26-Jul-04		1345	144.00	2.50	2.63	1.05	
28-Jul-04	210	1515	47.00	8.25	0.70	0.08	0.48

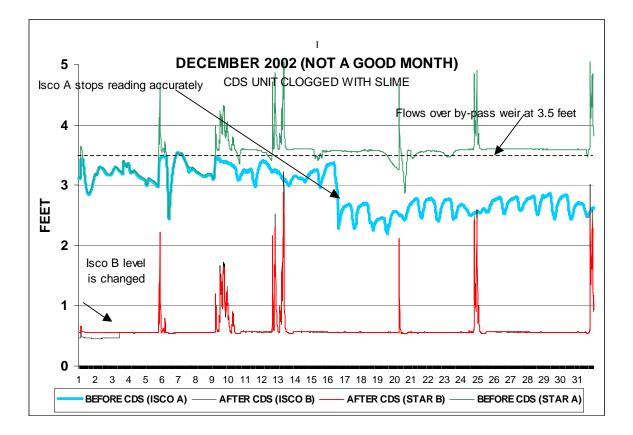
Table B-2. Rainfall characteristics Year 2

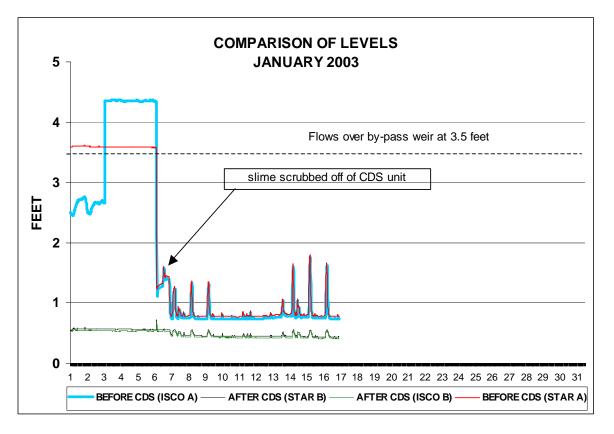
DATE	JDAY	Start	Inter-Event	Storm	Total Event	Avg. Int.	Max. Int.
		Time	Dry Period	¢	Rain Fall		¢
	(JD)	(hhmm)		(hr.)	(in)	(in/hr)	(in/15 min)
	(/	· · · · · · · · · · · · · · · · · · ·	(
29-Jul-04	211	1530	16.00	5.50	0.21	0.04	0.07
31-Jul-04	213	1600	43.00	6.75	0.59	0.09	
1-Aug-04	214	715	8.50	5.25	0.34	0.06	
2-Aug-04	215	630	18.00	6.75	0.10	0.01	0.04
3-Aug-04	216	1830	29.25	1.00	0.32	0.32	0.15
4-Aug-04	217	830	13.00	6.25	0.33	0.05	
5-Aug-04	218	845	18.00	2.00	0.11	0.06	
7-Aug-04	220	200	39.25	7.25	2.00	0.28	
7-Aug-04	220	1615	7.00	3.25	1.94	0.60	
8-Aug-04	221	400	8.50	8.75	0.24	0.03	
8-Aug-04	221	1900	6.25	1.50	0.15	0.10	
9-Aug-04	222	1445	18.25	7.25	1.30	0.18	
13-Aug-04	226	1330	87.50	6.50	0.44	0.07	0.06
14-Aug-04	227	430	6.50	17.75	0.86	0.05	
16-Aug-04	229	1700	42.75	1.75	0.08	0.05	
18-Aug-04	231	1645	46.00	0.50	0.49	0.98	
21-Aug-04	234	1200	66.75	1.25	0.44	0.35	
22-Aug-04	235	1445	25.50	2.00	0.76	0.38	
23-Aug-04	236	1300	20.25	2.25	0.25	0.11	0.40
24-Aug-04	230	1130	20.25	5.25	0.60	0.11	0.21
25-Aug-04	238	1900	31.50	3.75	0.96	0.26	
29-Aug-04	230	1030	83.75	3.50	0.23	0.07	0.20
31-Aug-04	242	2130	55.50	4.00	0.55	0.14	0.20
4-Sep-04	244	800	78.50	40.75	8.05	0.20	
7-Sep-04	240	1745	46.25	0.50	0.09	0.18	
8-Sep-04	251	1115	17.00	9.25	1.15	0.12	0.52
9-Sep-04	252	300	6.50	3.50	1.13	0.40	
12-Sep-04	255	245	68.25	2.00	0.29	0.40	
15-Sep-04	259	1645	84.00	1.25	0.23	0.13	
20-Sep-04	264	2230	124.50	6.75	0.23	0.03	
20-Sep-04 21-Sep-04	265	1200	6.75	1.50	0.05	0.03	0.00
26-Sep-04		445	111.25	6.50	1.78	0.03	0.01
20-069-04	270	443	111.23	0.00	1.70	0.27	0.15
	SUMN	ARY ST	ATISTICS				
¥ observa	*		74	74	74	74	74
Average	Ì		103.10	6.66	0.98	0.20	0.28
Median			43.00	5.25	0.51	0.12	0.22
std. Dev.	•		165.67	7.63	1.24	0.21	0.23
Maximum			835.50	40.75	8.05	1.05	0.91
Minimum			6.25	0.50	0.05	0.01	0.01
TOTAL R	0 IN I				72.51		

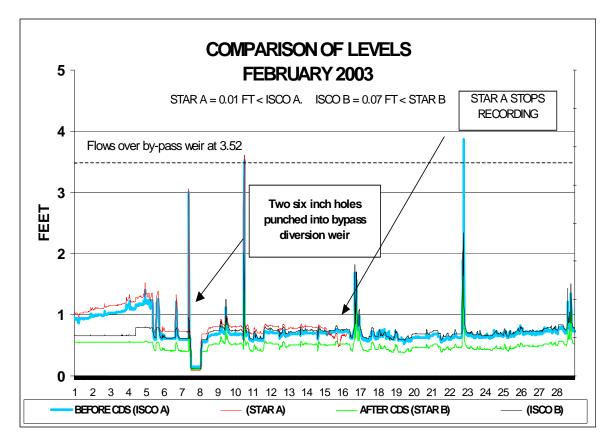
Table B-2. Rainfall characteristics Year 2

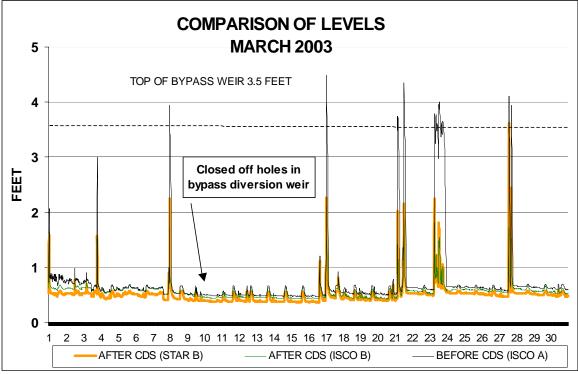

Table B-3. Rainfall characteristics Year 3										
DATE	JDAY	Start	Inter-Event	Storm	Total Event	Avg. Int.	Max. Int.			
	•	Time	Dry Period		Rain Fall					
	(JD)	(hhmm)	······	(hr.)	(in)	(in/hr)	(in/15 min			
24-Nov-04	329	2000	1424.75	12.50	0.5	0.04	0.02			
27-Nov-04	329	2000	59.50	2.25	0.5	0.04	0.02			
10-Dec-04	345	12000	301.75	3.25	0.18	0.07	0.00			
23-Dec-04	358	1200	310.75	0.75	0.27	0.08	0.03			
25-Dec-04	360	445	38.00	13.00	1.43	0.03	0.03			
14-Jan-05	14	645	469.00	9.25	0.57	0.06	0.1			
22-Jan-05	22	2315	189.25	1.00	0.06	0.08	0.03			
25-Feb-05	56	1400	805.75	4.75	0.36	0.08	0.00			
27-Feb-05	58	30	29.75	13.00	1.68	0.00	0.07			
3-Mar-05	62	1545	98.25	12.25	0.44	0.13	0.05			
9-Mar-05	68	1100	237.50	9.75	0.44	0.04	0.08			
14-Mar-05	73	1400	113.25	1.00	0.33	0.03	0.00			
15-Mar-05	73	1745	26.75	5.75	0.33	0.06	0.31			
16-Mar-05	74	1745	18.75	26.00	2.23	0.08	0.20			
23-Mar-05	82	645	130.50	4.25	0.34	0.03	0.24			
23-Mar-05 28-Mar-05	87	415	113.25	4.25	0.04	0.08	0.03			
		315	116.50	5.25	0.00	0.03	0.03			
2-Apr-05	103	300			0.55	0.10				
13-Apr-05	113	1730	258.75	2.75	1.16	0.25	0.40			
23-Apr-05	116	1630	251.75 67.00	4.00	1.16	0.29	0.44			
26-Apr-05 1-May-05	121	315	92.25	3.50	0.77	0.10	0.51			
	121	1300	102.25	5.25	0.77	0.22	0.17			
5-May-05	125	1945	265.50	4.50	0.98	0.08	0.22			
16-May-05 31-May-05	156	430	340.25	7.00	1.54	0.22	0.84			
	151	2330	12.00	12.25	1.54	0.22	0.83			
31-May-05	151	2330	12.00	9.75	0.58	0.14	0.93			
2-Jun-05	153	530		6.25	0.09	0.08	0.12			
3-Jun-05	154	530	18.00 18.00	3.50	0.09	0.01	0.02			
4-Jun-05	155	1515	6.00	5.25	1.6	0.05	1.08			
4-Jun-05	155	1400	51.75		1.8	0.30				
5-Jun-05	156	2000	78.00	1.50 3.25	0.06	0.09	0.88			
8-Jun-05	160					0.02				
9-Jun-05	160	1345	14.50	5.50	1.17		0.68			
10-Jun-05	163	530	10.25	30.75	0.7	0.02	0.07			
12-Jun-05		1415	26.00	4.25	0.84 0.18	0.20	0.28			
17-Jun-05	168	1145	113.25	0.50		0.36	0.15			
19-Jun-05	170	945	45.50	1.00	0.1	0.10	0.09			
22-Jun-05	173	1630	77.75	4.25	0.08	0.02	0.04			
23-Jun-05	174	1530	18.75	7.25	0.96	0.13	0.31			
25-Jun-05	176	1830	43.75	2.00	0.96	0.48	0.48			
27-Jun-05	178	1330	41.00	9.50	0.77	0.08	0.45			
28-Jun-05	179	1800	19.00	6.75	2.06	0.31	0.88			
29-Jun-05	180	1430	13.75	0.50	0.33	0.66	0.30			
29-Jun-05	180	2145	6.75	7.75	1.61	0.21	0.51			

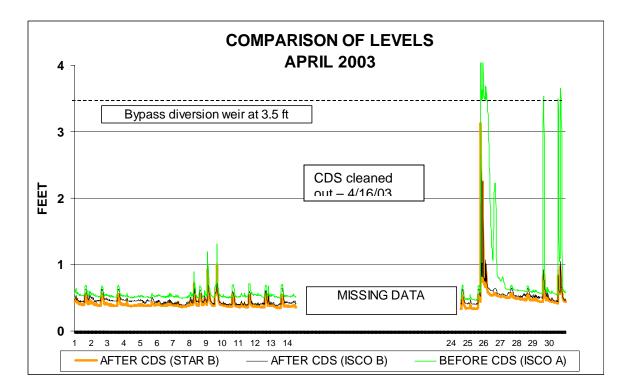

CC	ontinued						
DATE	JDAY	Start	Inter-Event	Storm	Total Event	Avg. Int.	Max. Int.
		Time	Dry Period	Duration	Rain Fall		
	(JD)	(hhmm)	(hours)	(hr.)	(in)	(in/hr)	(in/15 min)
29-Jun-05	180	2145	6.75	7.75	1.61	0.21	0.51
30-Jun-05	181	1330	8.00	7.00	0.82	0.12	0.33
2-Jul-05	183	945	35.25	3.75	0.13	0.03	0.08
8-Jul-05	189	1830	149.00	2.00		0.07	0.07
9-Jul-05	190	230	6.00	32.00	1.91	0.06	0.38
12-Jul-05	193	1600	53.50	2.50	2.7	1.08	1.15
13-Jul-05	194	1500	20.50	2.75	2.01	0.73	0.77
14-Jul-05	195	1630	22.75	7.00	0.49		0.25
17-Jul-05	198	1815	66.75	1.75	0.08		0.03
21-Jul-05	202	2315	99.25	1.25	0.03		0.04
24-Jul-05	202	1500	62.50	6.00	1.16		0.34
24-00-05 28-Jul-05	209	1630	91.50	5.50	0.17	0.13	0.04
29-Jul-05	209	1330	15.50	8.75	1.15		0.00
	210	1330		1.25	0.47	0.13	0.49
30-Jul-05 1-Aug-05	211	1630	19.75 45.25	2.25	1.18		0.22
		1430		0.75			
5-Aug-05	217		91.75		0.77	1.03	0.39
6-Aug-05	218	1330	22.25	7.00	0.89		0.41
7-Aug-05	219	1500	18.50	5.25	0.11	0.02	0.09
8-Aug-05	220	1500	24.00	1.75			0.06
9-Aug-05	221	1915	26.50	3.50	0.36		0.24
10-Aug-05	222	1345	15.00	3.50	0.25		0.16
13-Aug-05	225	1445	69.50	1.50	0.09		0.07
14-Aug-05	226	1445	22.50	2.00	0.22	0.11	0.17
17-Aug-05	229	15	55.50	3.75	0.13	0.03	0.06
21-Aug-05	233	1730	113.25	3.00	1.67	0.56	0.44
22-Aug-05	234	2015	23.75	3.25	0.56		0.27
23-Aug-05	235	1915	19.75	3.00	1.57	0.52	0.81
26-Aug-05	238	1715	67.00	1.50	0.18		0.16
27-Aug-05	239	1415	19.50	9.25	0.07	0.01	0.03
28-Aug-05	240	1530	16.00	8.75	1.99		0.03
31-Aug-05	243	1545	67.25	2.00	0.61	0.31	0.38
2-Sep-05	245	1415	44.50	4.00	0.34	0.09	0.09
5-Sep-05	248	1345	67.50	1.25	0.14	0.11	0.10
6-Sep-05	249	1545	24.75	0.75	0.22	0.29	0.14
22-Sep-05	265	1713	385.00	1.75	0.14	0.08	0.08
	Missed	part of the s	9/22 storm beca	use of power	failure.		
	Missed	the 9/28-29	storm:also pow	er failure; sto	rm ended about	4:15 on Se	pt 29th.
5-Oct-05	278	1945	212.75	1.00		0.94	0.53
6-Oct-05	279	1715	20.50	2.75	0.62	0.23	0.13
9-Oct-05	282	200	54.00	0.5	0.10		0.05
23-Oct-05	296	1930	353.00	15.25	1.70		0.18
¥ _ h · ·		IARY STA	ATISTICS				
≠ observat	ions		81	81	81	81	81
Average			111.32	5.69	0.72	0.19	0.29
Median			51.75	3.75	0.51	0.10	0.19
std. Dev.			195.32	5.97	0.65	0.23	0.28
Maximum			1424.75	32.00	2.70		1.15
Minimum			6.00	0.50	0.03	0.01	0.02
TOTAL RA	IN				58.38		

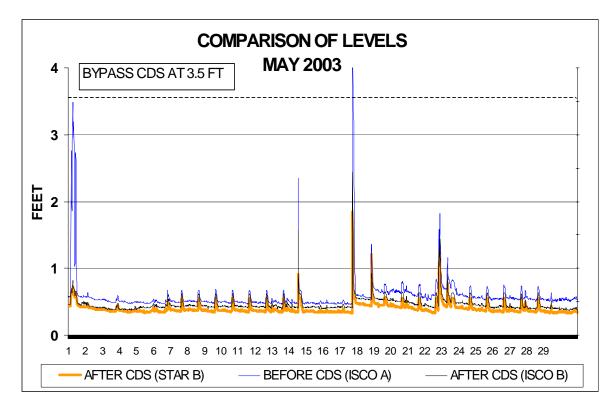

Table B-3. Rainfall characteristics Year 3 for storms > 0.05 inches


APPENDIX C

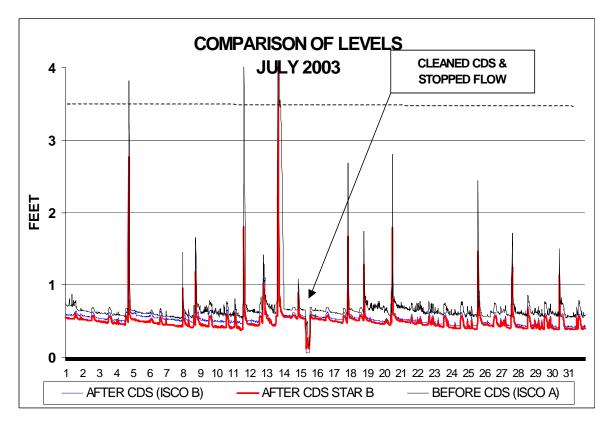

WATER LEVELS MEASURED IN FRONT OF THE CDS UNIT AND AFTER FLOW LEAVES CDS UNIT. FIGURES ALSO IDENTIFY PROBLEMS

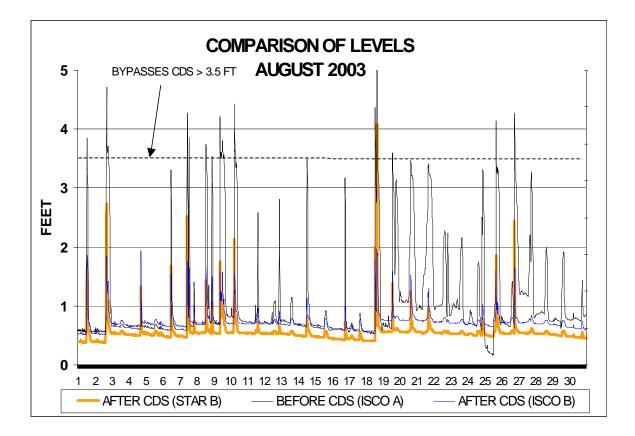


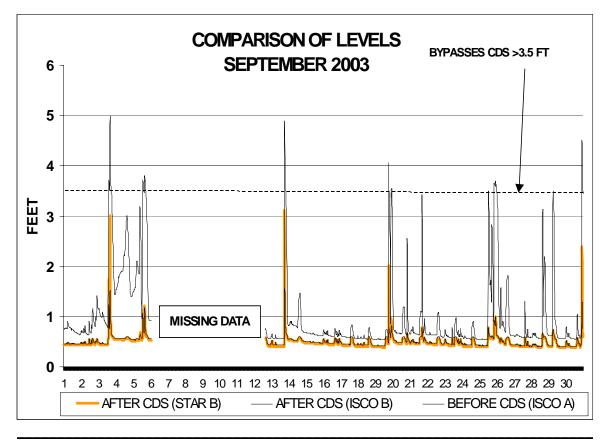




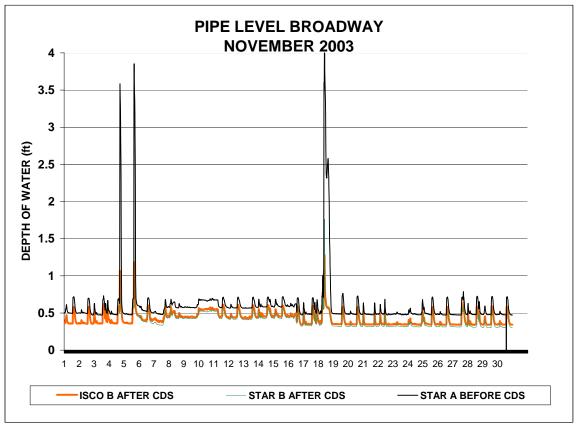


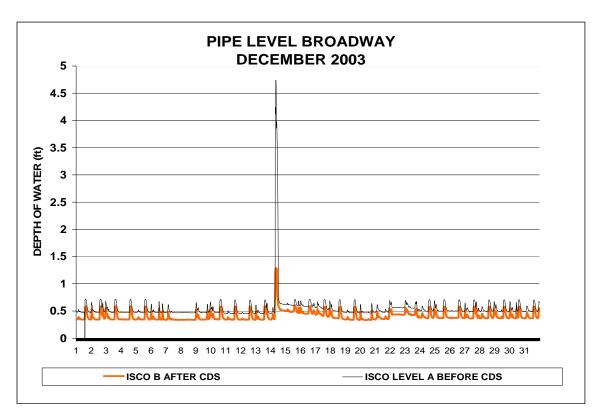


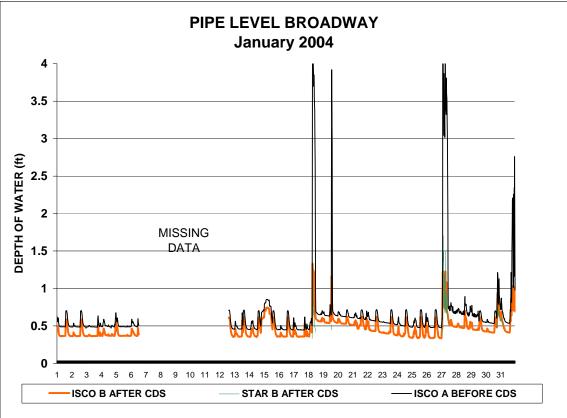


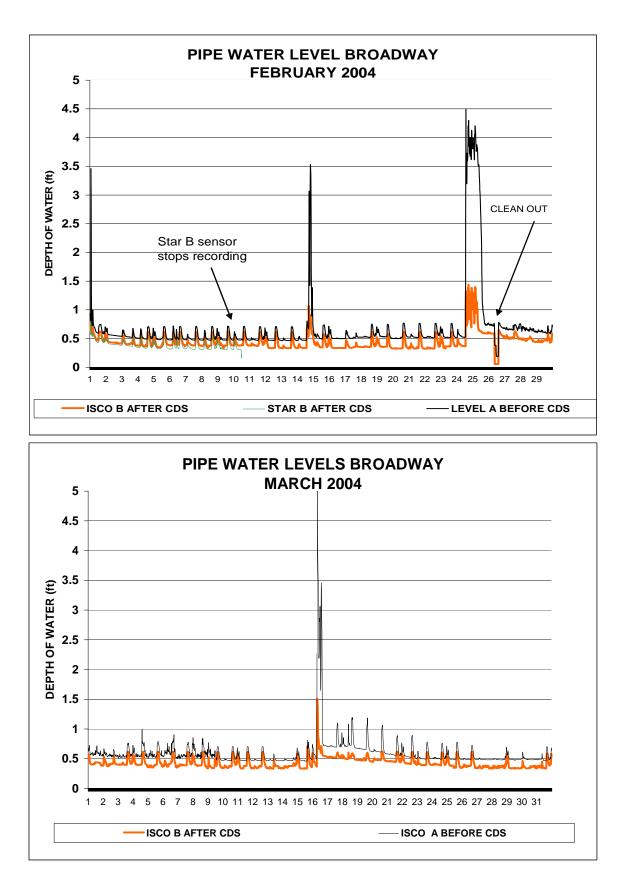


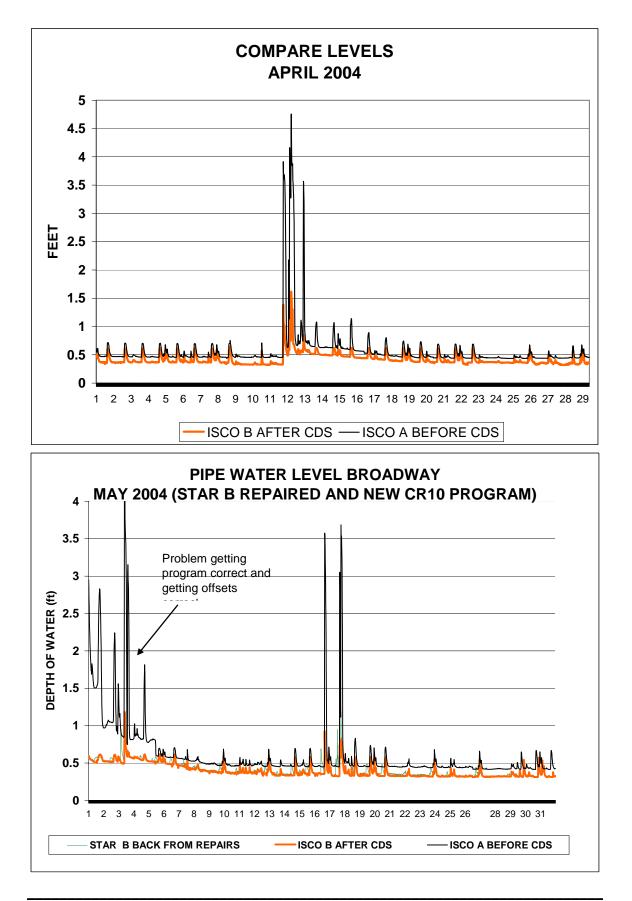
Southwest Florida Water Management District, Stormwater Program

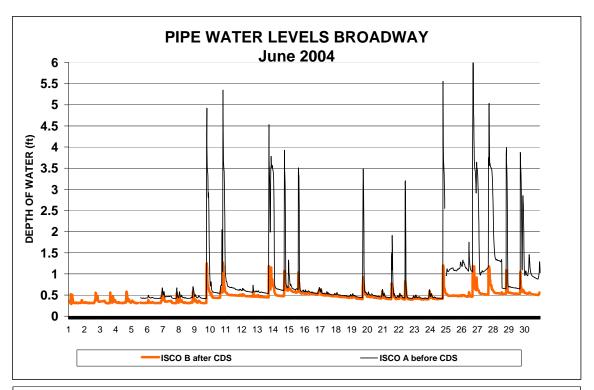


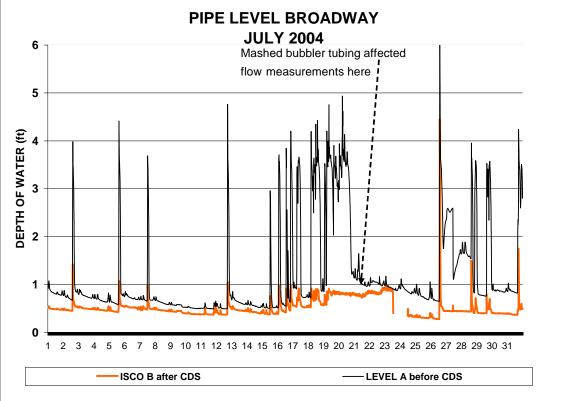


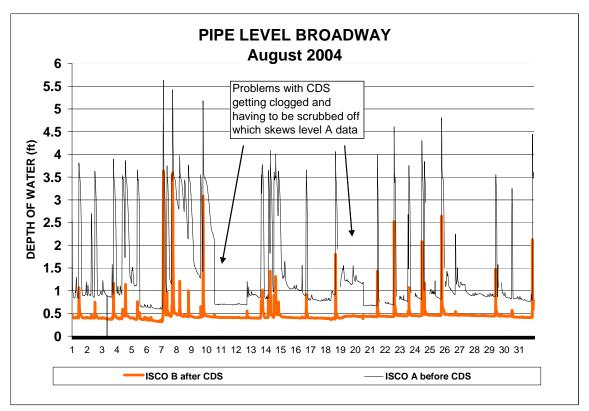


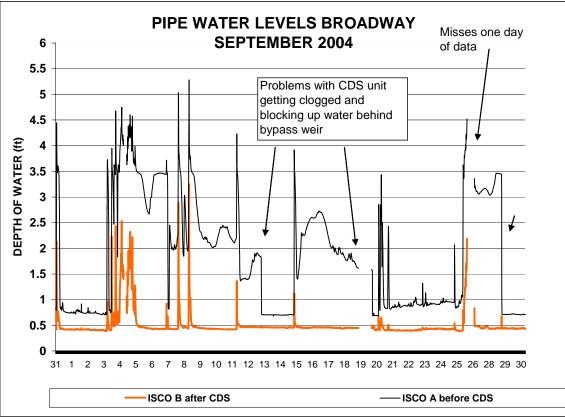


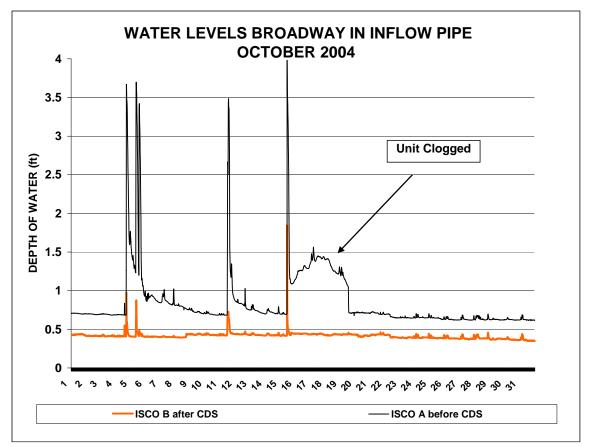


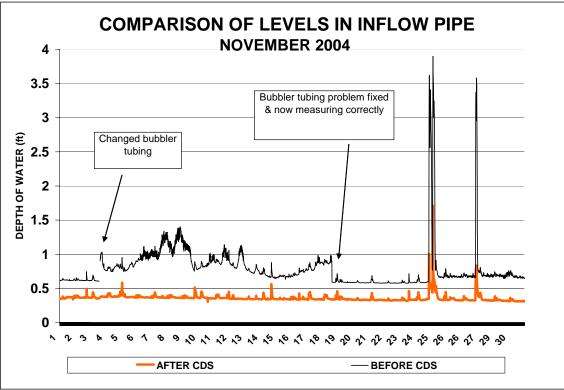


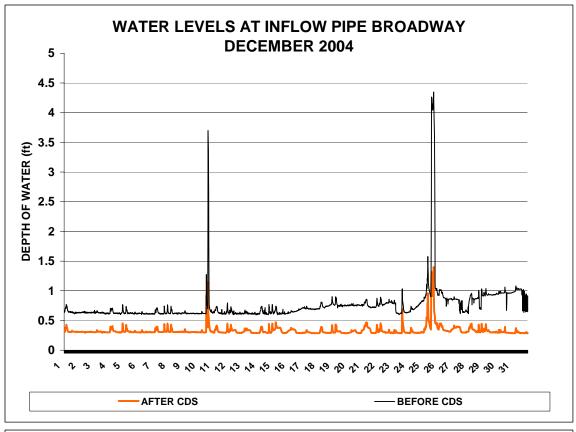


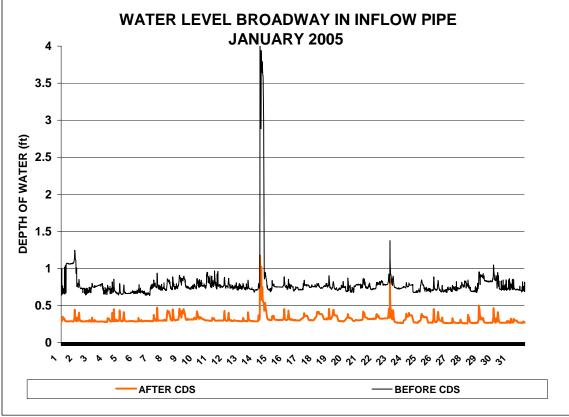


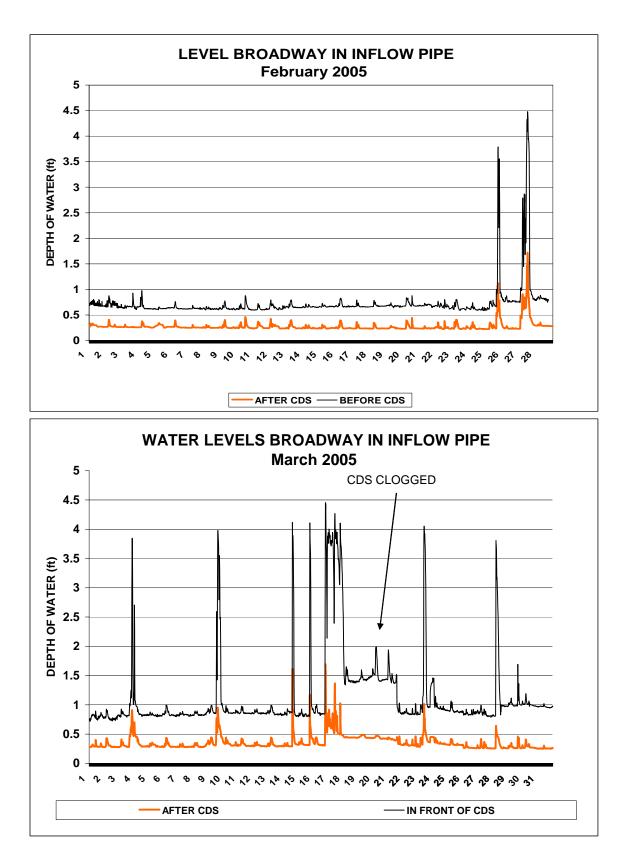


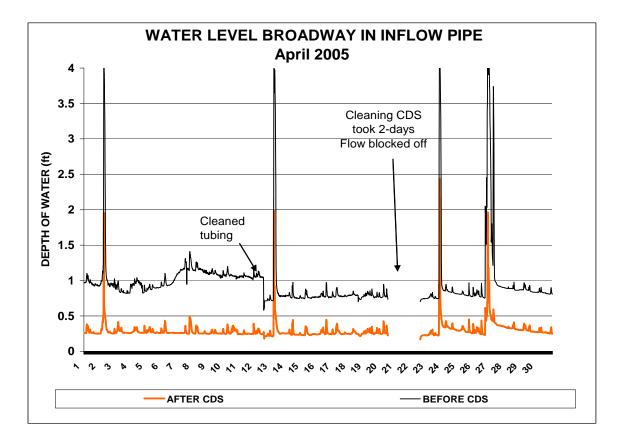


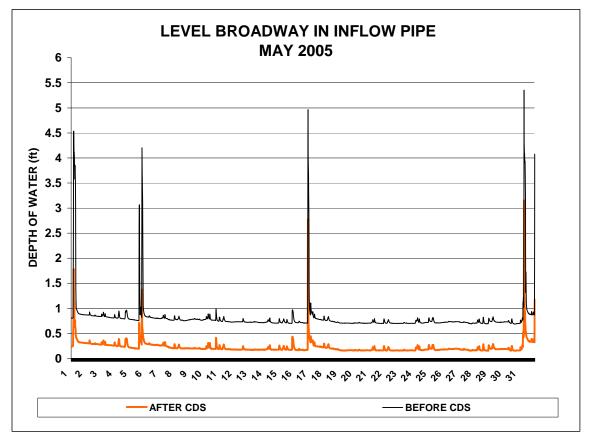


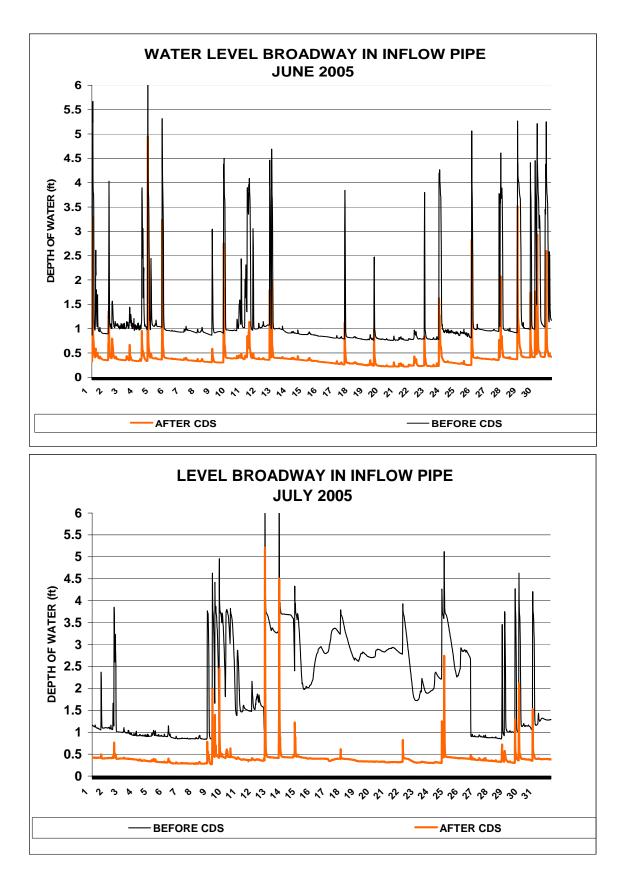


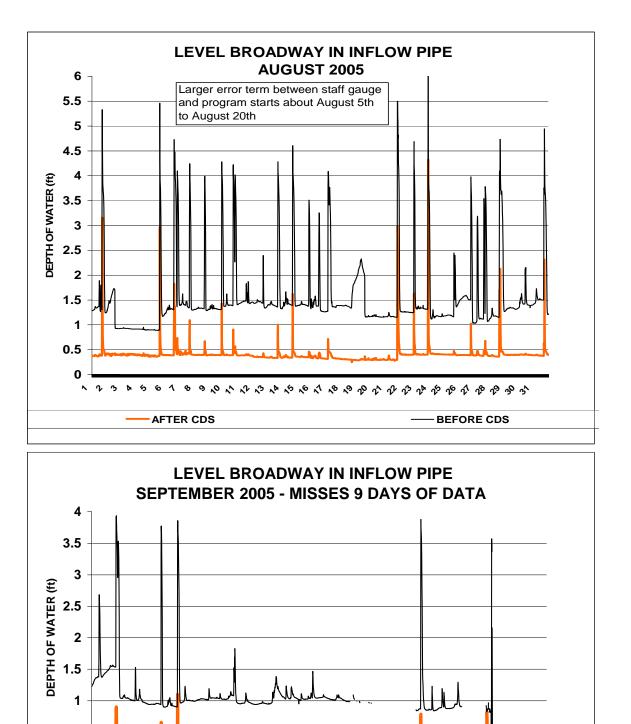


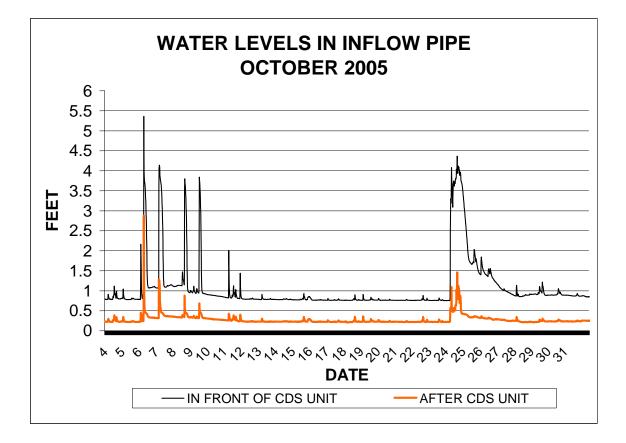

Southwest Florida Water Management District, Stormwater Program











0.5

APPENDIX D

FLOW DATA FOR INDIVIDUAL STORM EVENTS

Arrangement of Appendix D: A summary table with water budget calculations is shown first. The flow and rainfall data for most storms greater than 0.05 inches are shown for each month. (Explanatory notes to help understand results are still on some of the figures). Summary information in boxes on each graph shows the flow with bypass subtracted out in parentheses. For the first year, two sensors measured flow and the STAR meter measured velocity. In March of the second year the STAR sensor stopped recording and a Marsh McBirney velocity meter was installed to measure velocity with mixed results. For the final year, the Marsh McBirney stopped recording. Regression equations and a modified weir equation were developed and compared to the first year of data to estimate flow. See Appendix A for the description of these equations.

WATER BUDGET CALCULATION 2002-03 WATER BUDGET CALCULATIONS

By-pass flow is the storm flow that goes over the overflow weir

Everything < 0.6 ft was calculated using the base flow weir

In graphs, total flow is shown first and the amount going into CDS unit is in Parentheses The Isco gives more accurate level measurements according to Rebecca.

Later calculations showed the STAR was more accurate

When I did the November numbers, it looks as if the STAR water levels are better

Calculated the area of the pond as between 44,100 to 47,250 square feet

Calculated the area of the point as between 44, 100 to 47,200 square reel

One calculation was 46,605 sq. feet and I will use that one until I can get a better number RAIN OUT=rain measured with tipping bucket rain gauge at outflow until it stopped recording

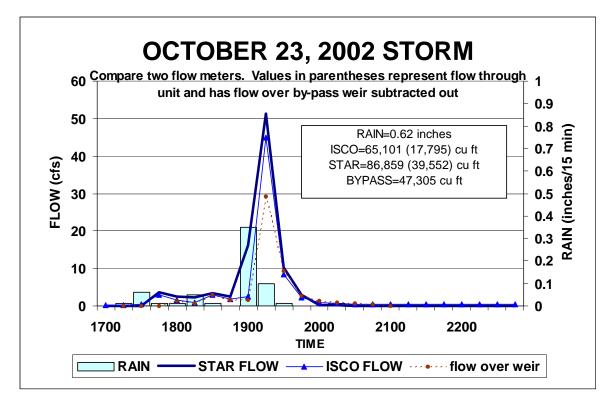
RAIN IN=rain measured with tipping bucket rain gauge near the inflow

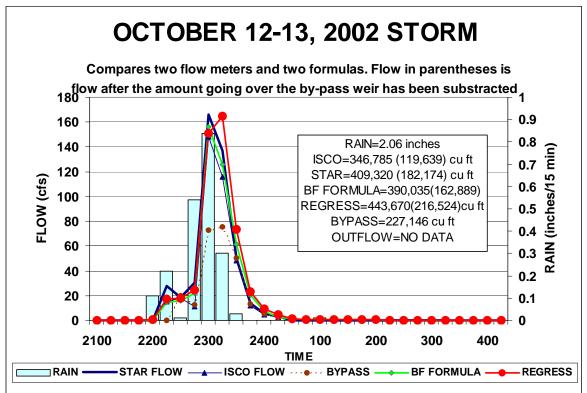
Estimated base flow at inflow from daily summary on ISCO strip charts for missing data

WATER BUDGET EQUATION: FLOW IN – FLOW OUT = CHANGE IN STORAGE

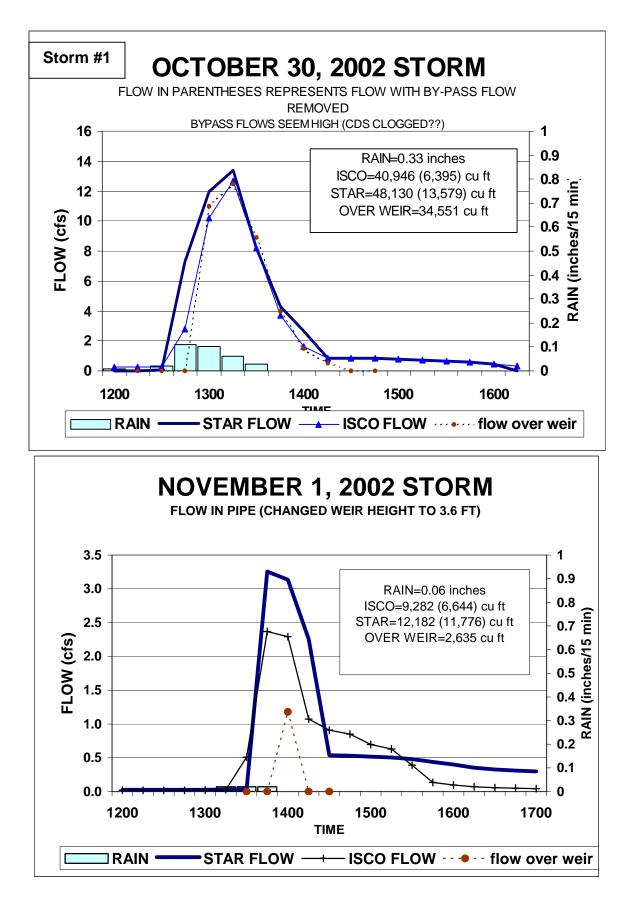
Where: -Flow in = rain on pond, storm flow and base flow

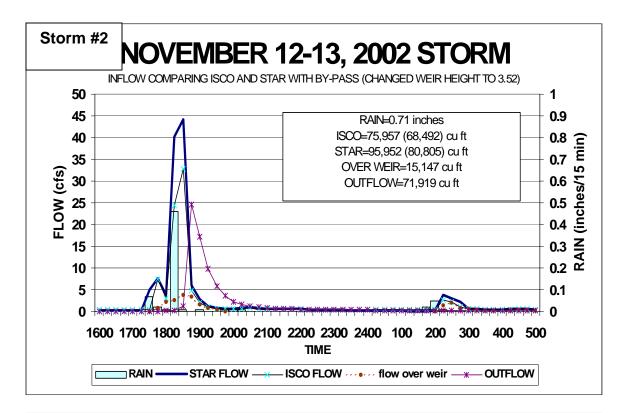
-Flow out = flow out of pond (storm flow and base flow) and evapotranspiration (ET).

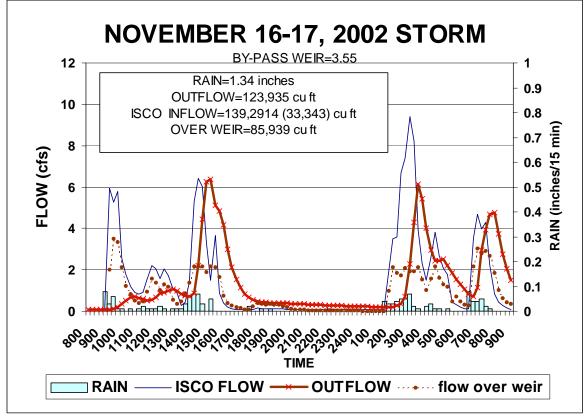

-Change in storage=difference between pond level at first of month compared to end of month times pond area

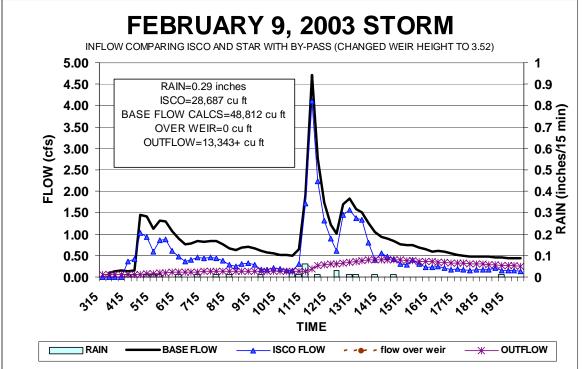

-The difference is caused by leaks, weir obstructions and other errors.

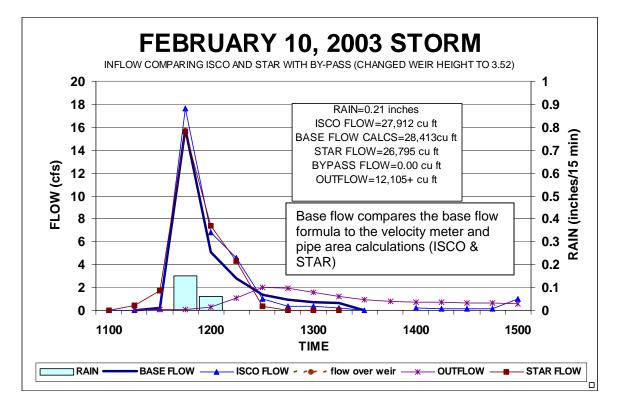
		INFLOW					OUTFLOW			SEEPAGE		REMARKS
	RAN	RAIN	RAIN	BASE	STORM	BY-PASS	BASE	STORM	ET	STORAGE L	EAKOR	
	OUT	IN		FLOW	FLOW	FLOW	FLOW	FLOW	(est)		ERROR	
	inches	inches	cu ft	cu ft	cu ft	cuft	cu ft	cu ft	cu ft	cu ft	cu ft	
						duplicates						
						not in						
						budget						
October	na	4.06	15,768	74,562	196,645	371,649						Testing instruments and formulas
November	na	2.12	8,234	197,666	230,541	141,742	124,716	199,122	12,816	11,185	88,601	CDS unit clogged & leak in outflow weir
December		no data collected										Instrument problems
January	0.00	0.00 r	no rainfall									No rainfall
February	2.01	2.17	8,428	216,815	200,066	6,717	237,166	160,501	6,991	11,185	9,466	Holes in by-pass weir
March	6.05	5.79	22,487	206,623	830,402	242,545	316,209	655,570	10,875	14,494	62,364	ISCO outflow gives better numbers for storms
April	3.34	3.35	13,011	268,202	490,437	89,936	267,792	475,424	16,855	13,236	-1,658	Base flow misses 10 days
May	2.23	2.30	8,933	210,761	309,695	0	301,252	278,524	19,263	-7,457	-62,194	ISCO @ out giving negative numbers; no good data; leve
June	na	13.26	51,499	169,169	2,204,091	840,147	374,441	1,918,438	20,972	26,658	84,249	Lost last version before I could check carefully. Used wro
July	na	6.70	26,021	247,311	1,214,978	475,892	687,955	801,546	22,875	-10,952	-13,114	CDS clean out
August	na	11.55	44,857	383,803	2,010,233	688,211	831,945	1,553,759	20,467	-7,923	40,645	Trouble with ISCO flows
September	na	4.93	19,147	274,866	660,365	316,565	559,618	716,376	16,312	10,253	-348,181	Pipe leaking into pond near outflow caused unmeasured
October	na	1.17	4,544	213,764	123,179	47,908	347,695	109,222	14,448	-3,262	-126,615	Vegetation blocking out weir causing flow errors

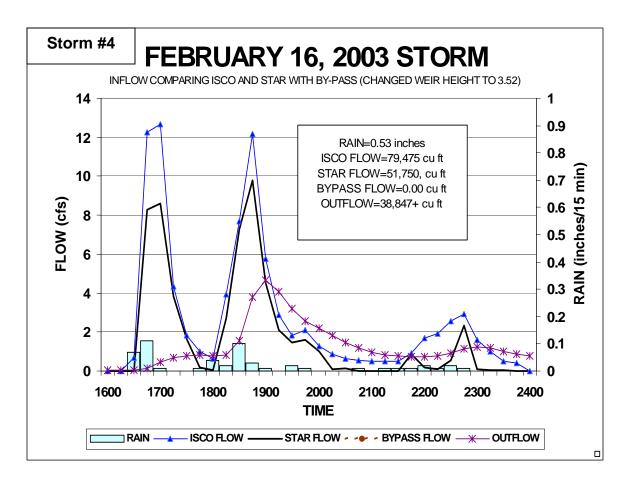

Used base flow weir formula for all flows <0.6 feet; Used velocity + pipe formula for storm flows

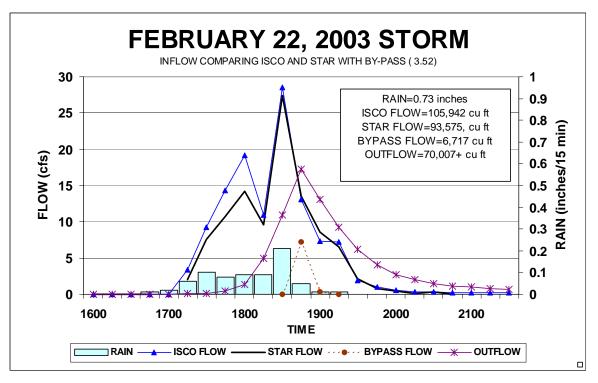

Southwest Florida Water Management District, Stormwater Program

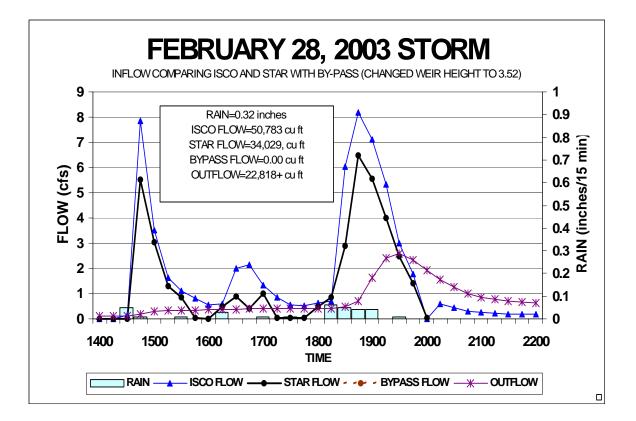


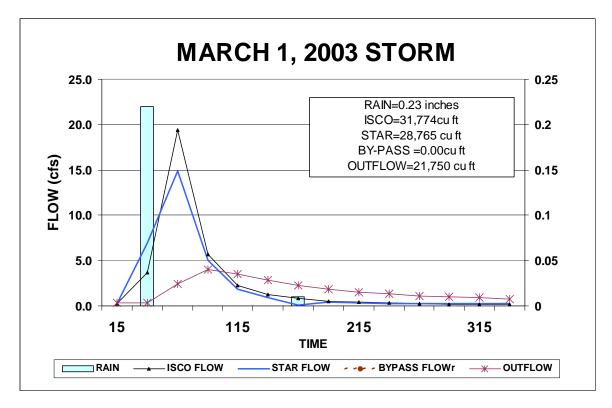

Formulas used the water level measured by the Star sensor, which reads slightly higher than the Isco water level sensor.

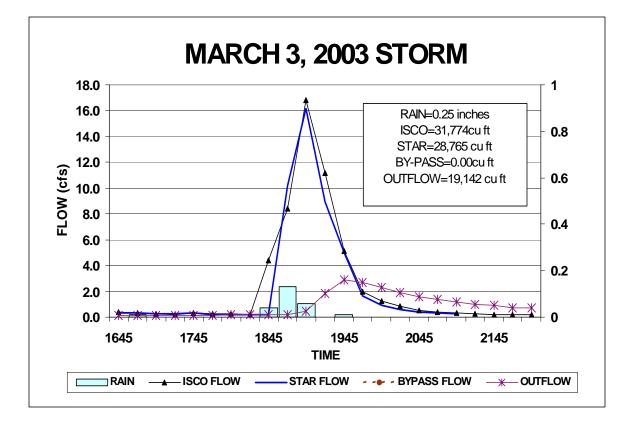


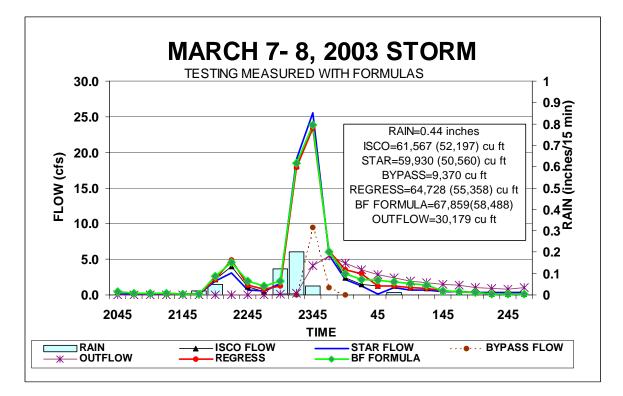


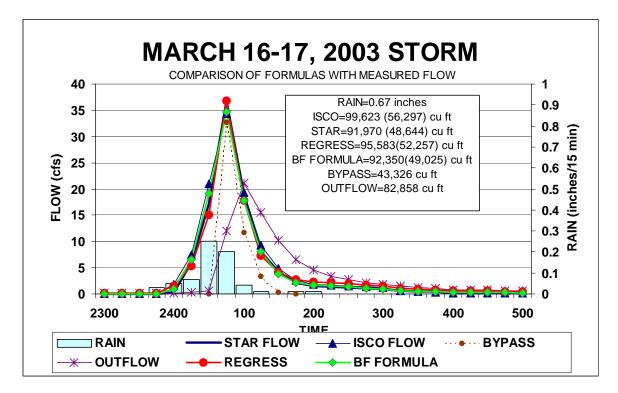


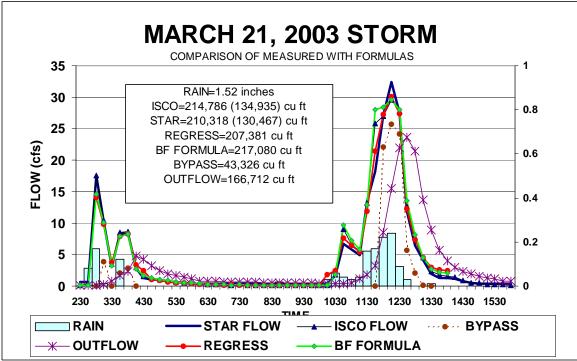

Did not process December data because no water quality data and equipment failures. Did not process January data because there was no rainfall.

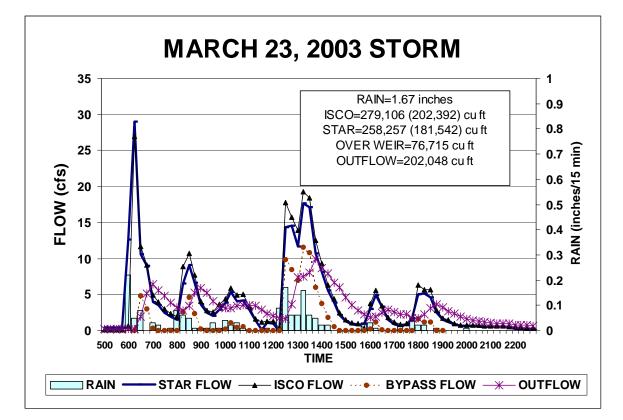


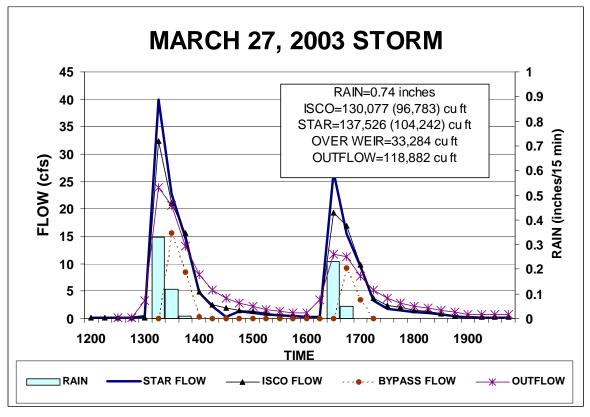


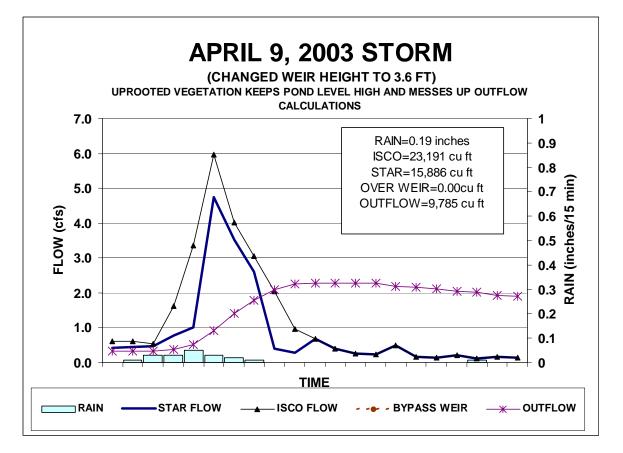


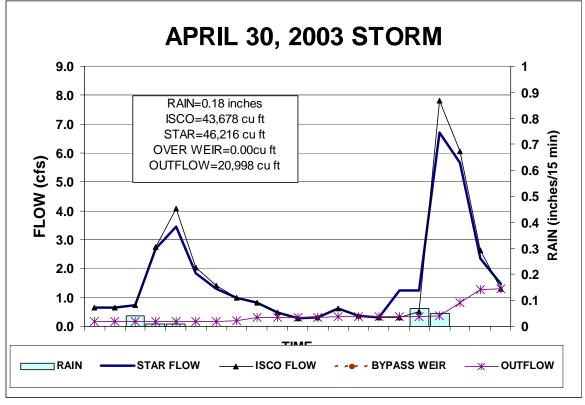


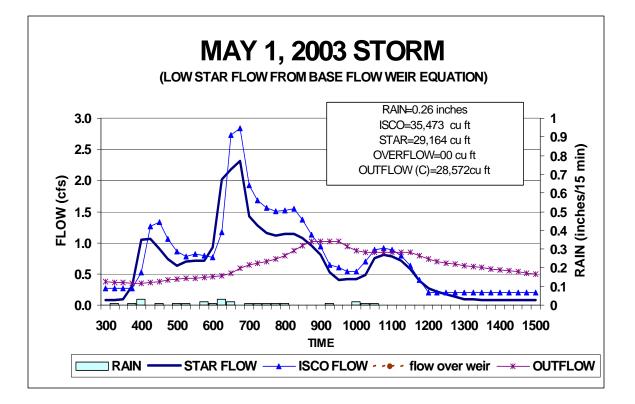


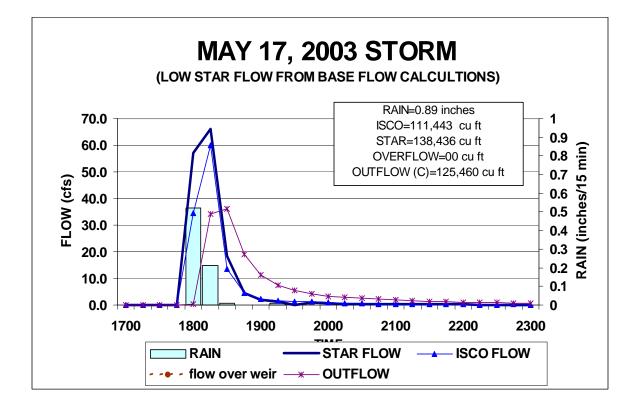


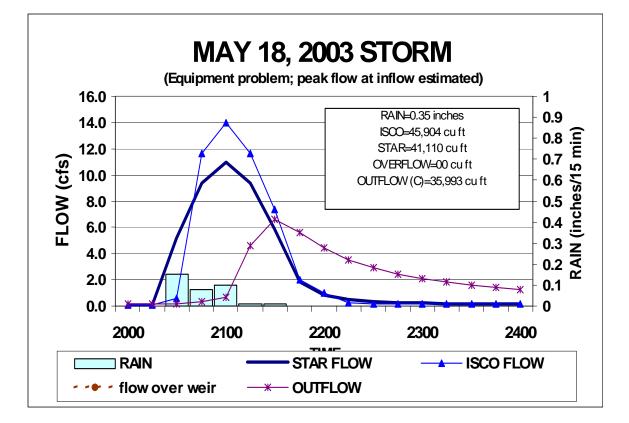


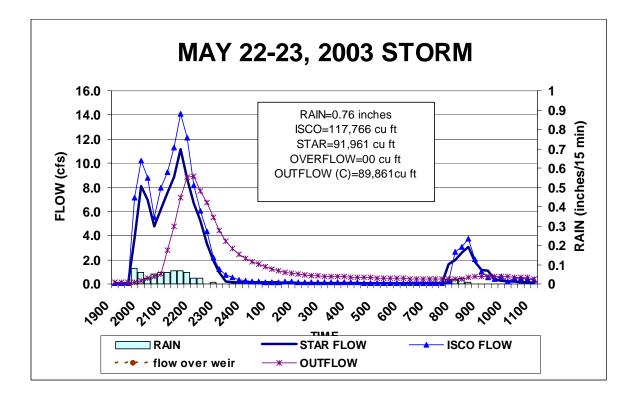

Southwest Florida Water Management District, Stormwater Program

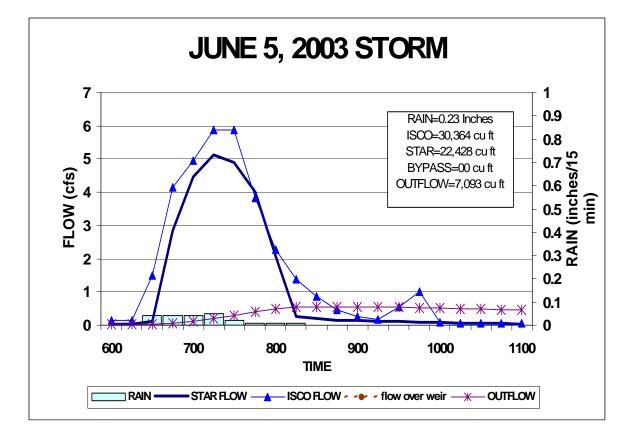


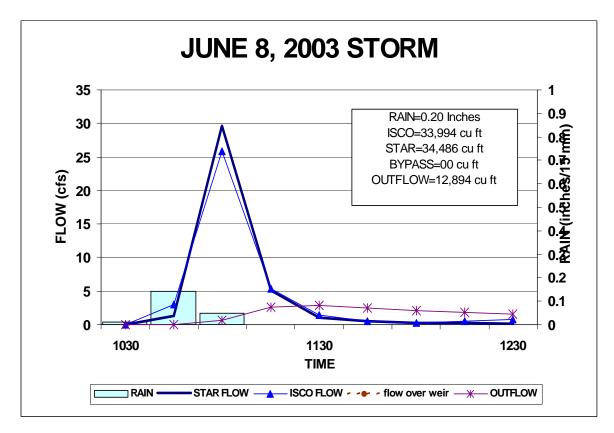


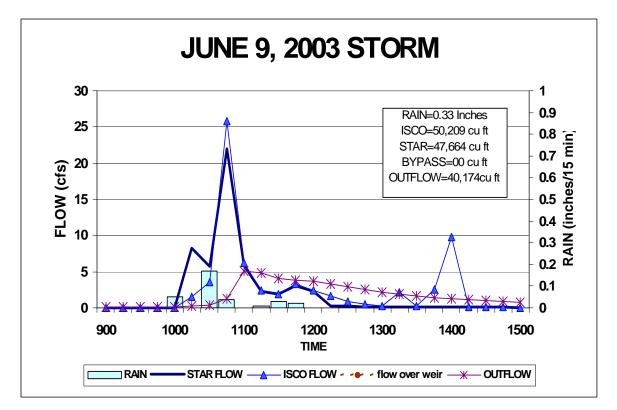


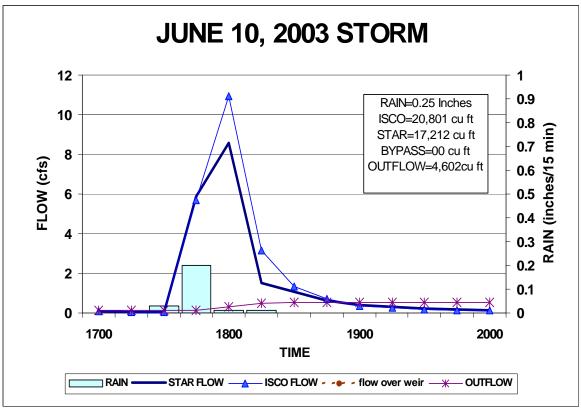


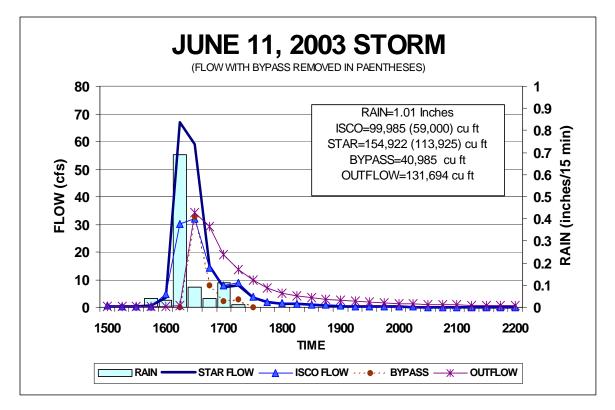


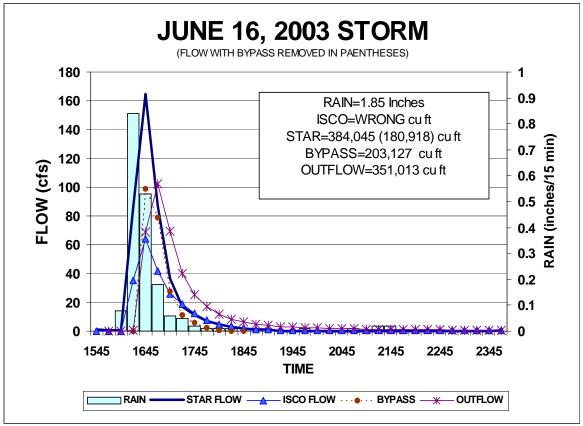


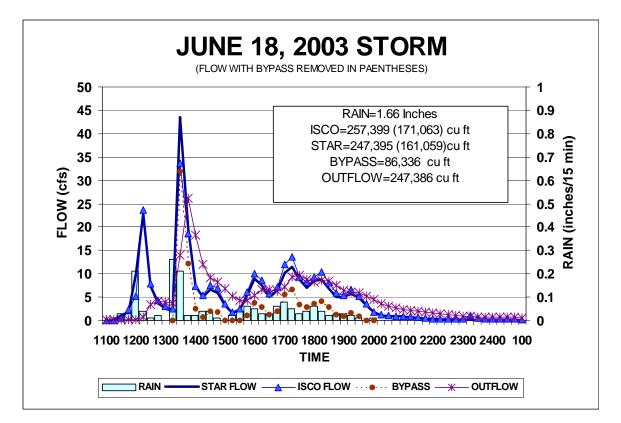


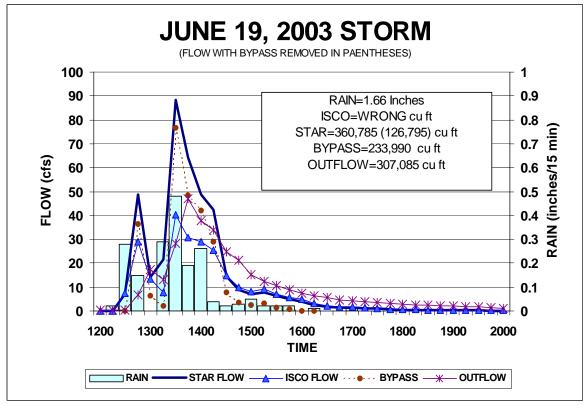


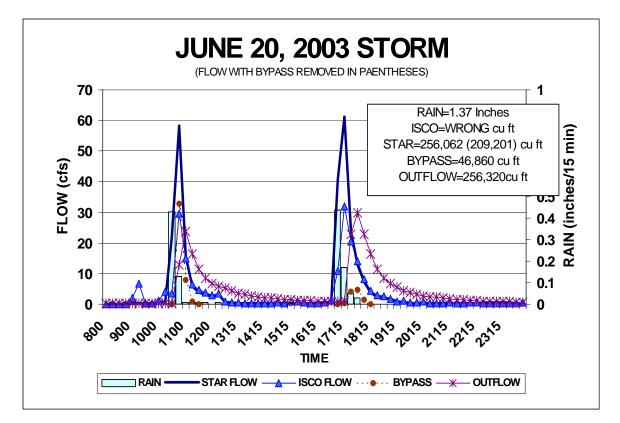


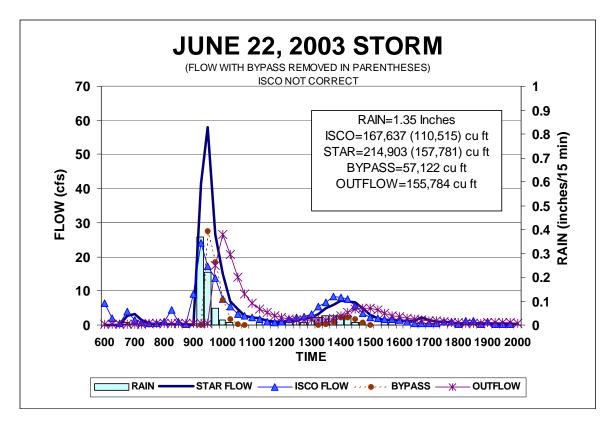


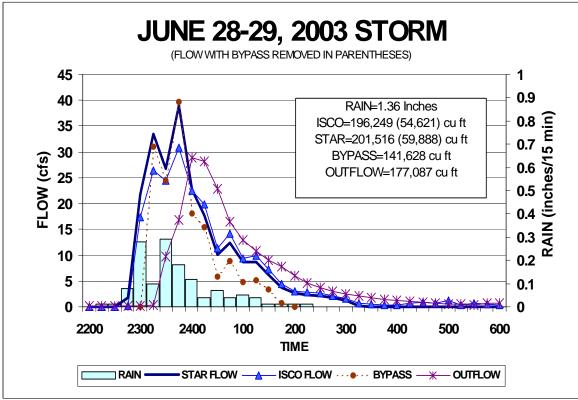


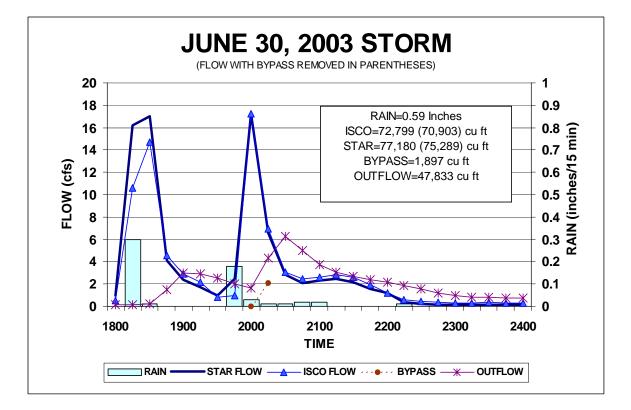


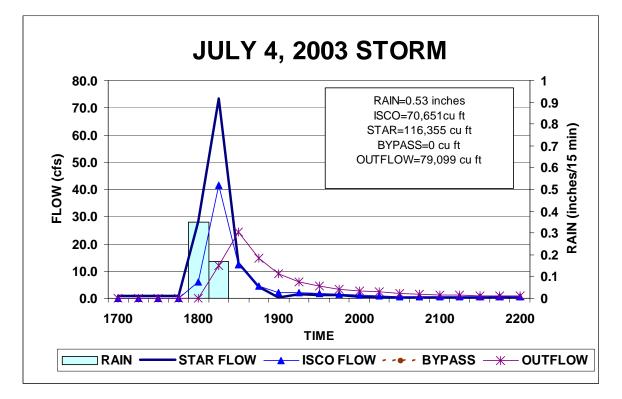


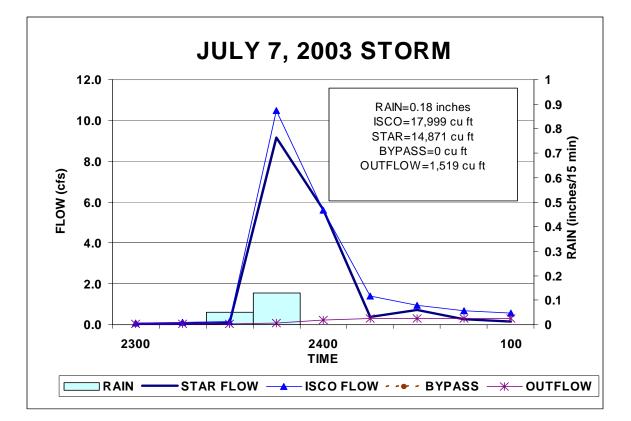


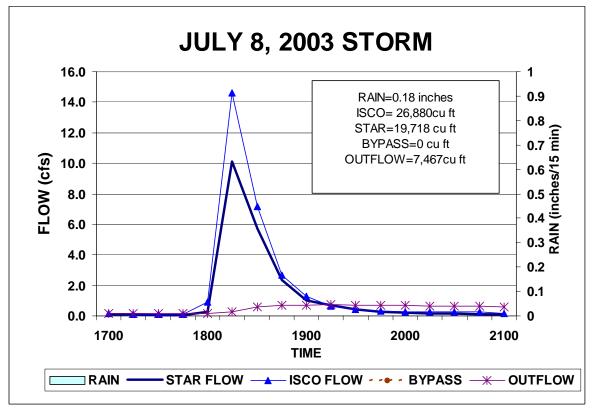


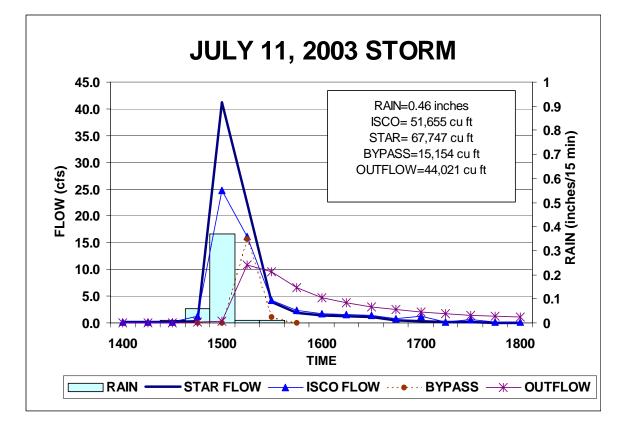


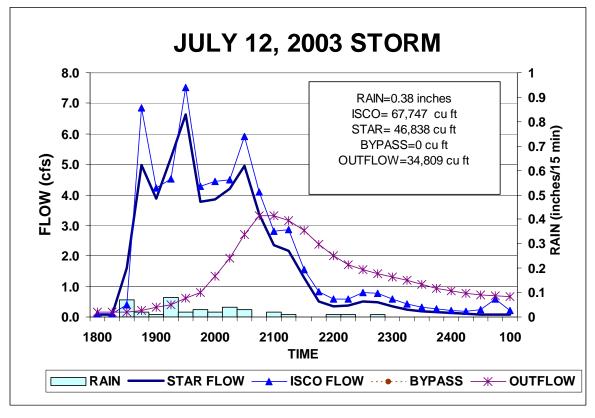


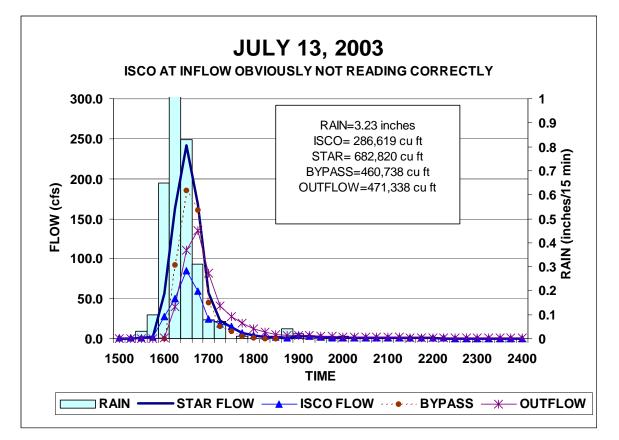


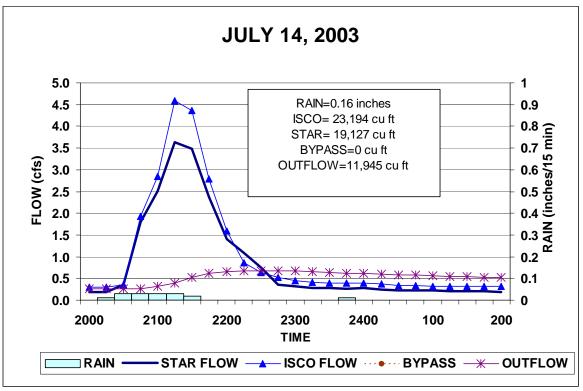


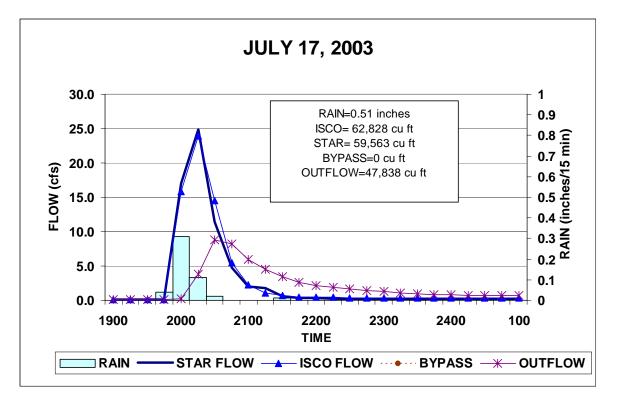


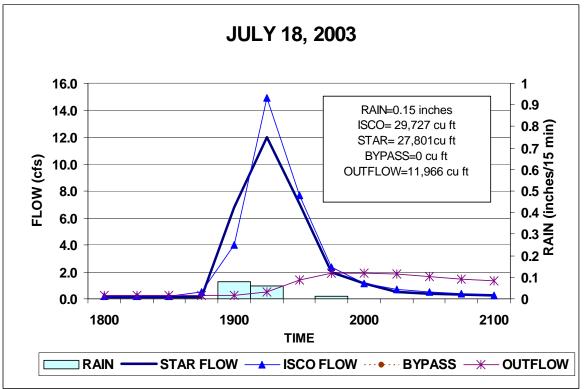


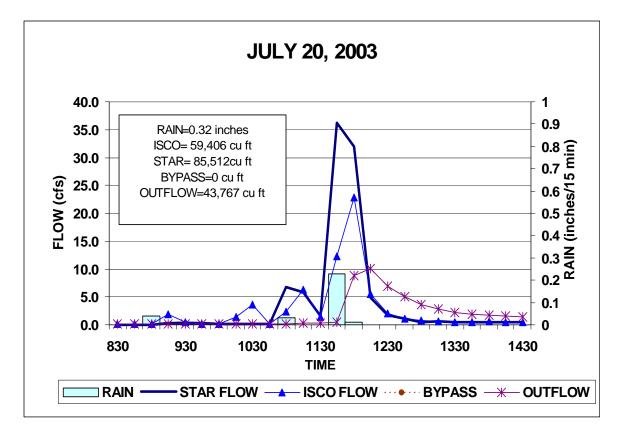


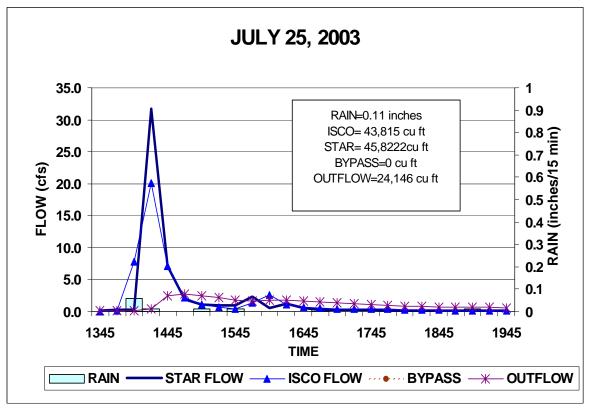


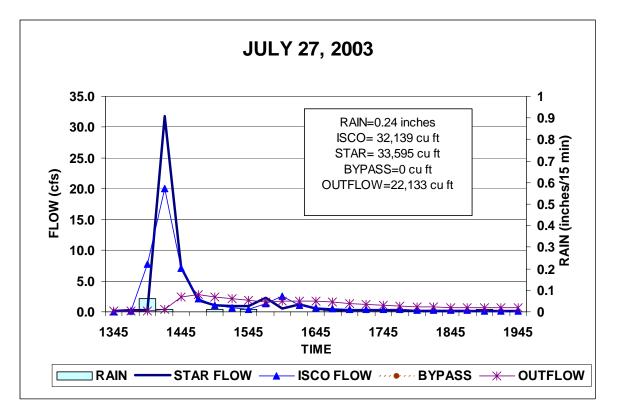


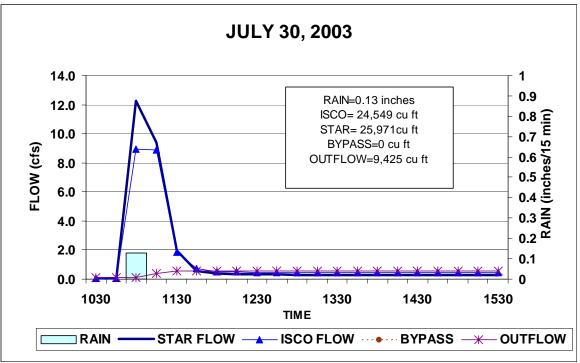


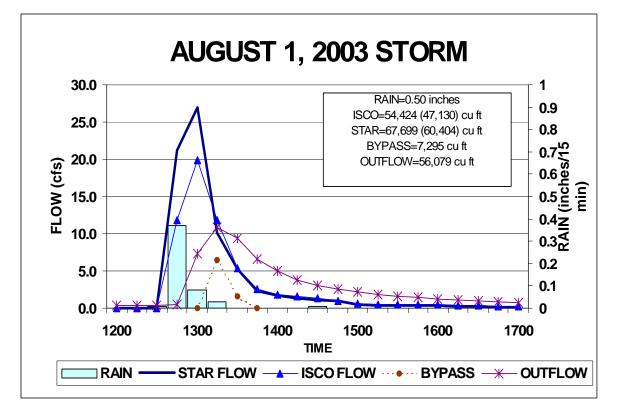


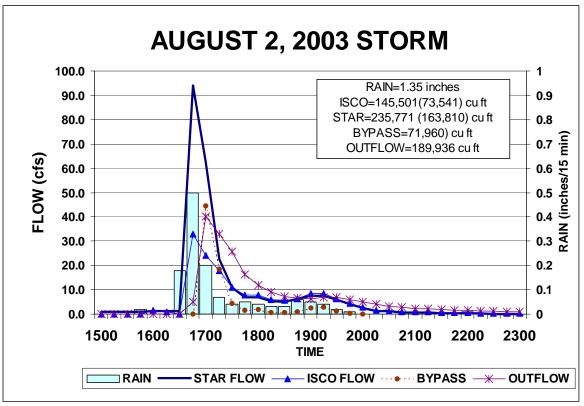


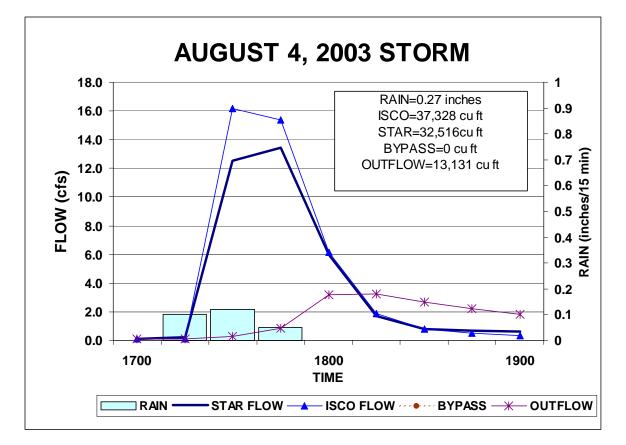


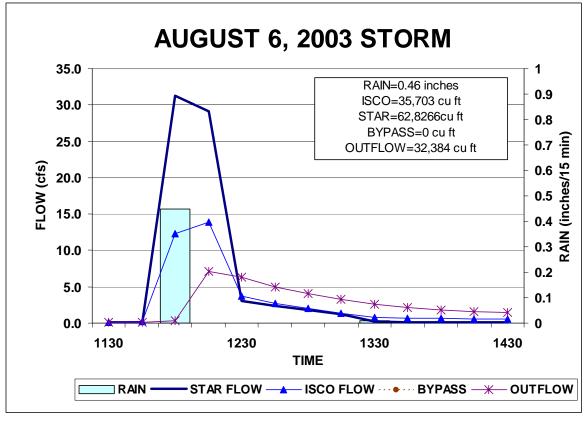


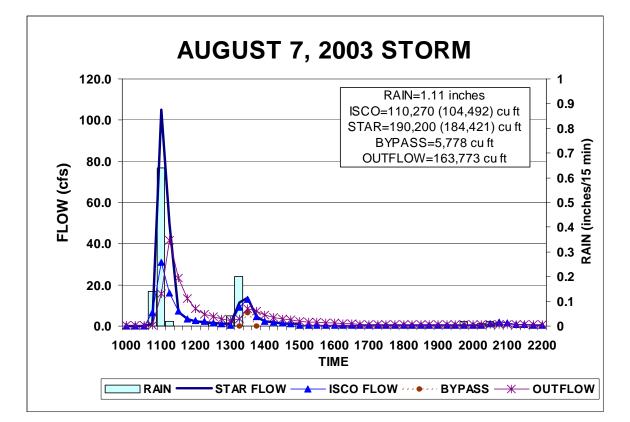


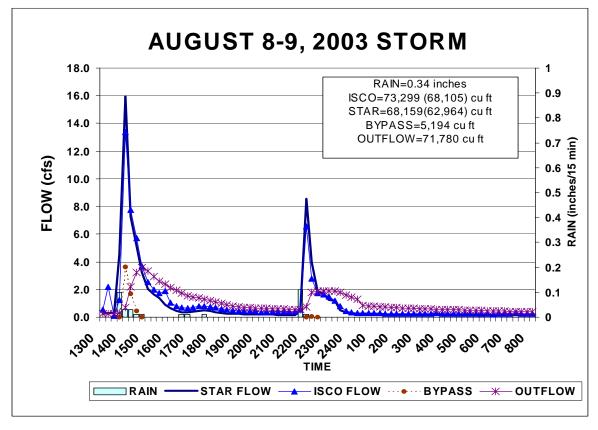

Southwest Florida Water Management District, Stormwater Program

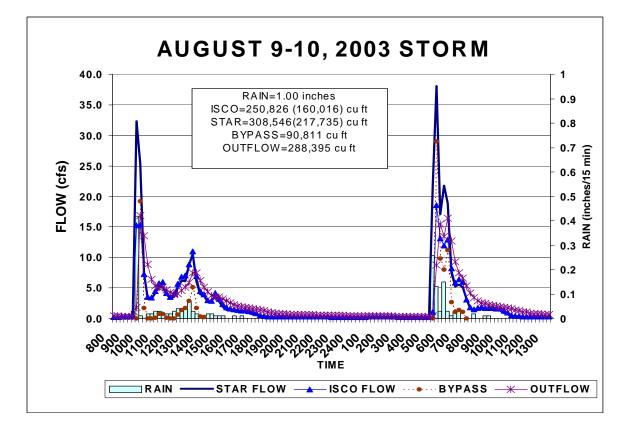


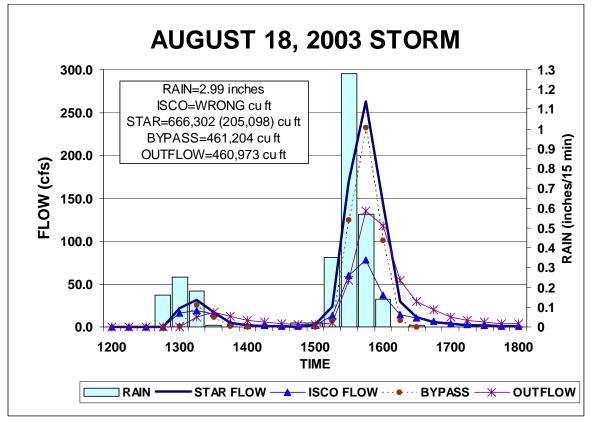


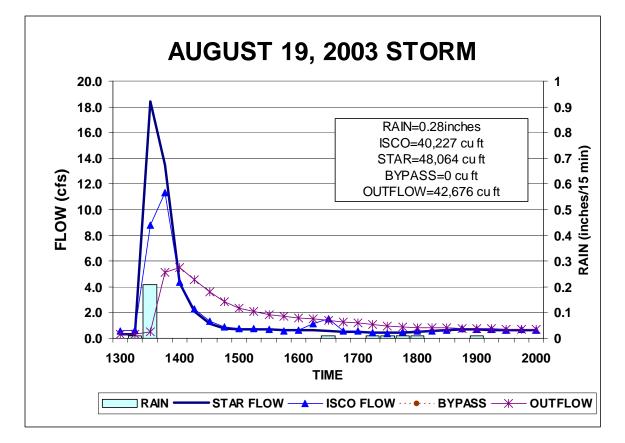


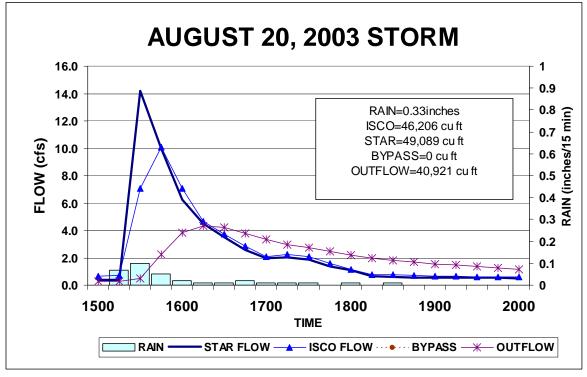


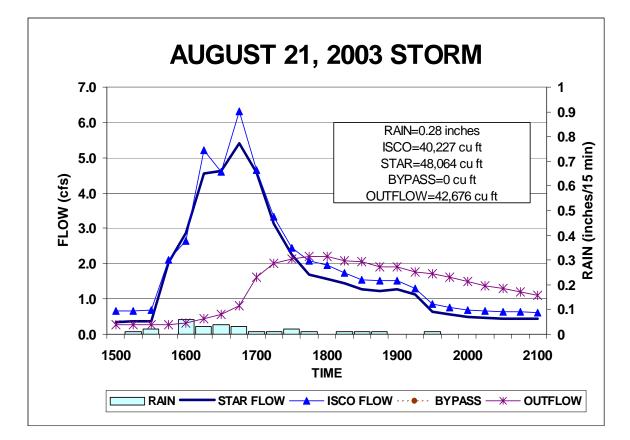


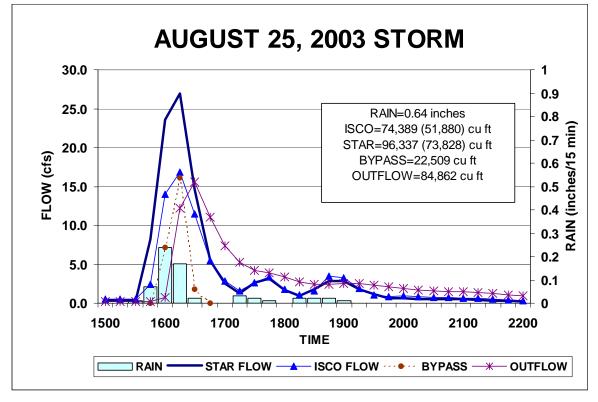


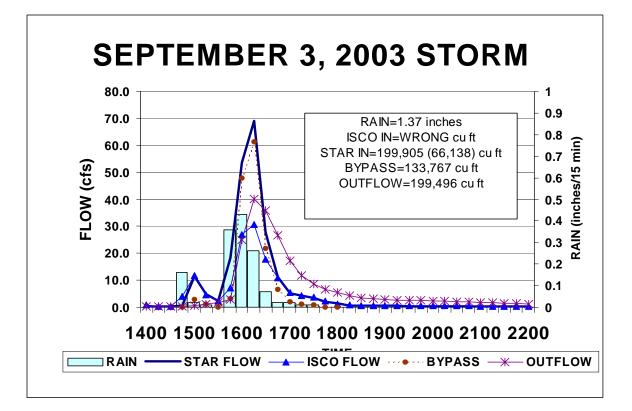


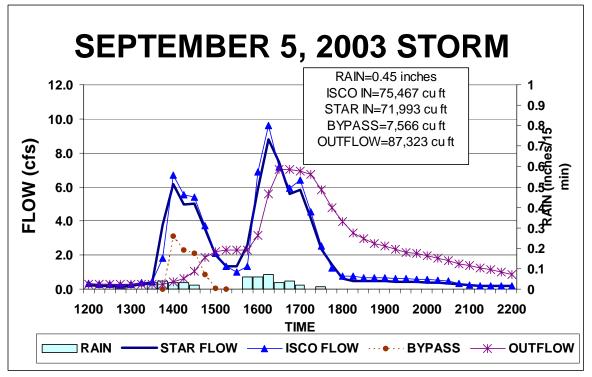


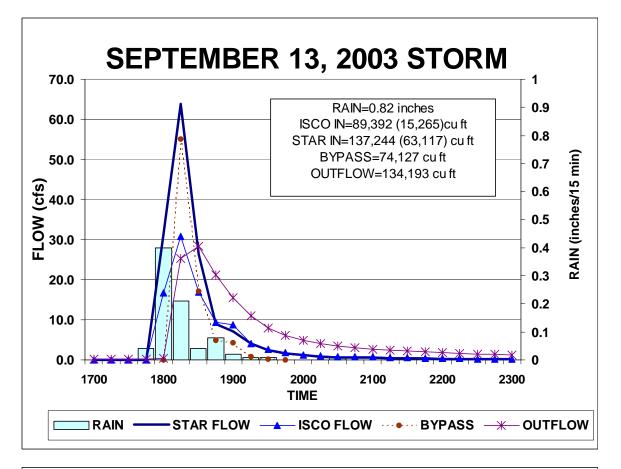


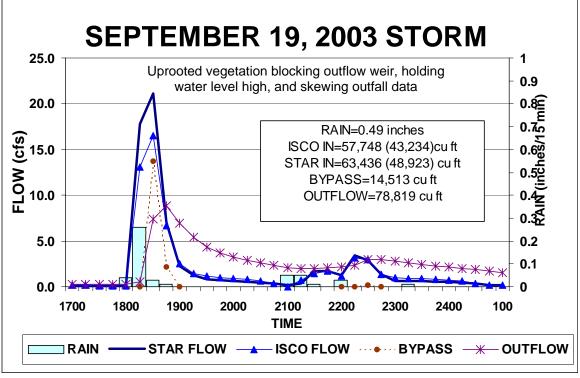


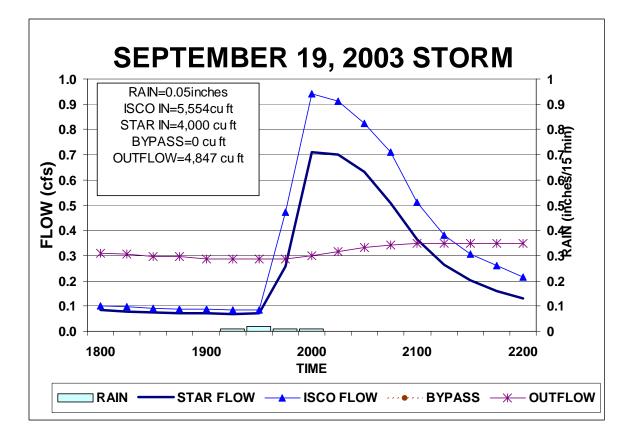


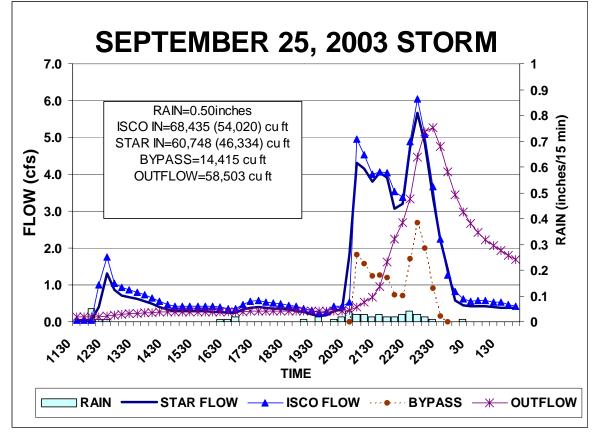


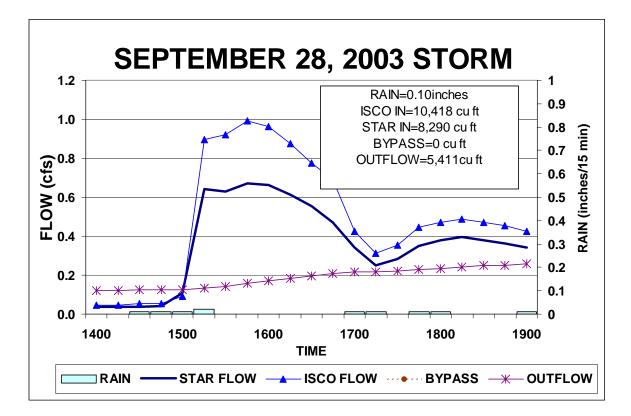


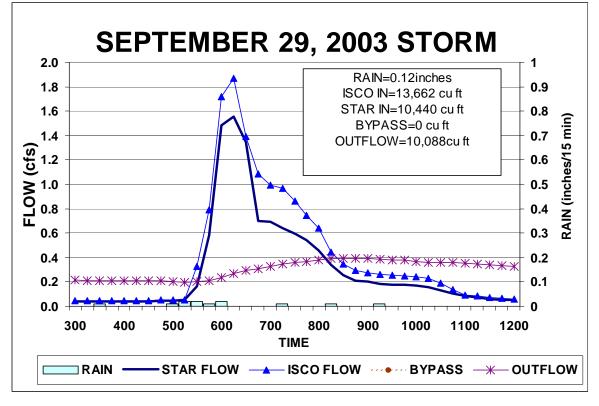


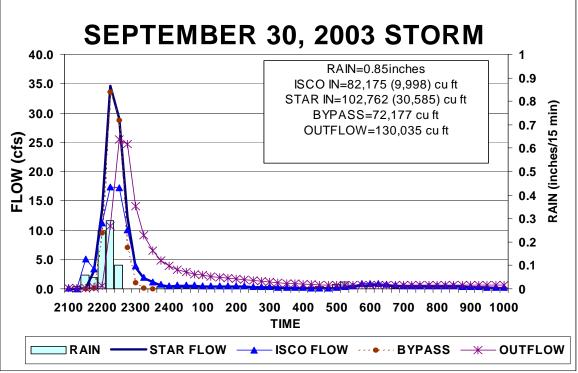


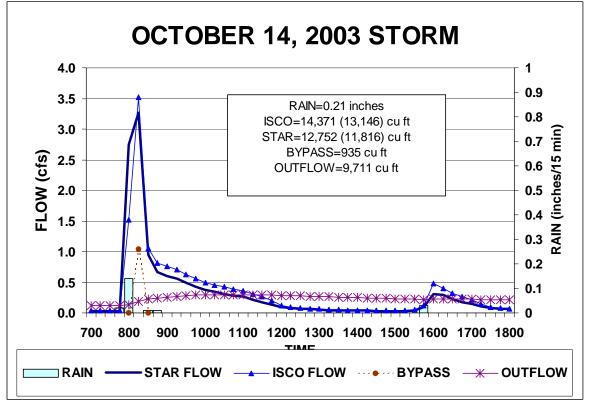


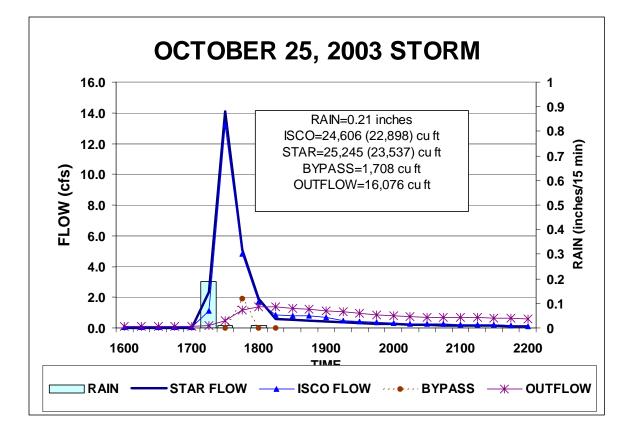


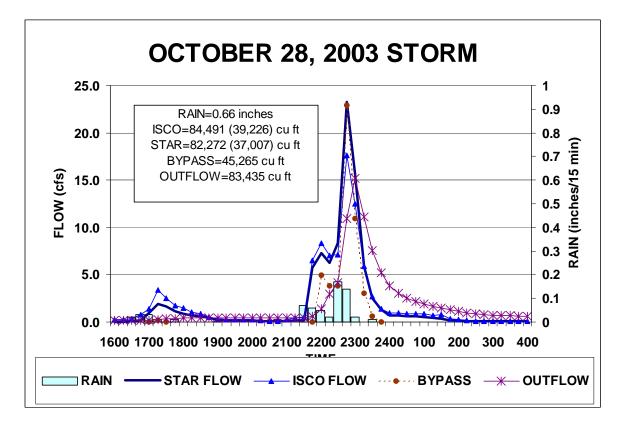












Still problem with uprooted vegetation blocking outflow weir and skewing calculations.

WATER BUDGET CALCULATIONS FOR 2003-04

Bypass flow is the storm flow that bypasses the CDS unit and discharges over weir All flows less than 1 cfs were calculated using base flow weir (see appendix A). In figures, total flow is shown first and the amount entering the CDS is in parentheses Equipment failures after March necssitated developing formulas from water level (see Appendix A) The area of the pond used in the calculations was 46,605 sq. ft. Pipes used to divert flow around the pond kept breaking loose and diverting unmeasured flow into & out of pond

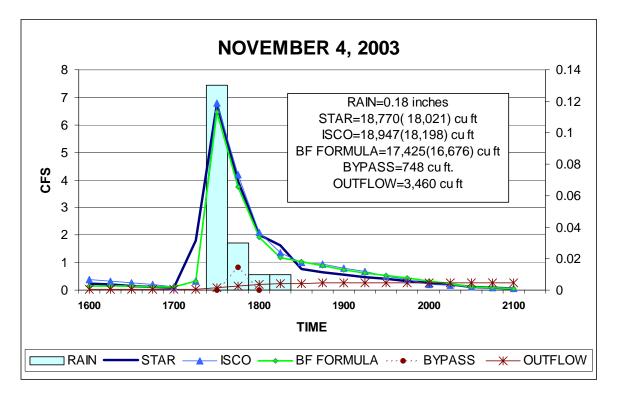
Some adjustment was made for this but it still caused errors, esp in June-Sept. Fixed Sept 15th. The V-nothch weirs (in and out) used to calculate base flow were frequently clogged with debris. Storm flow measurements were more accurate than base flow because of debris problems. ISCO, STAR, McBIRNEY represent various sensors used to measure velocity and water levels. BF FORMULA and REGRESS indicate formulas used to estimate flow (see Appendix A)

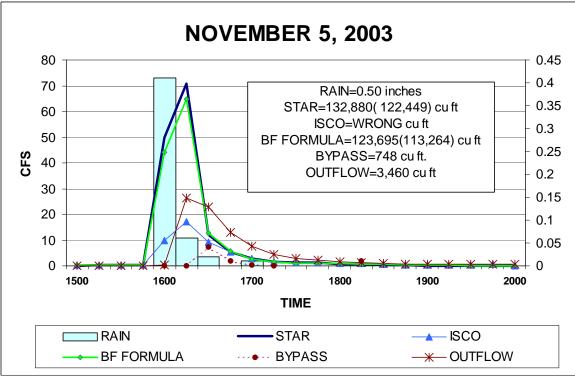
BF FORMULA not accurate when pipe is over half full and under estimates flow.

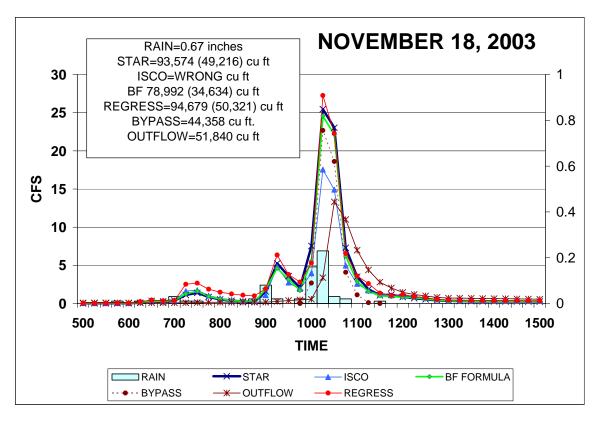
WATER BUDGET EQUATION: FLOW IN - FLOW OUT = CHANGE IN STORAGE

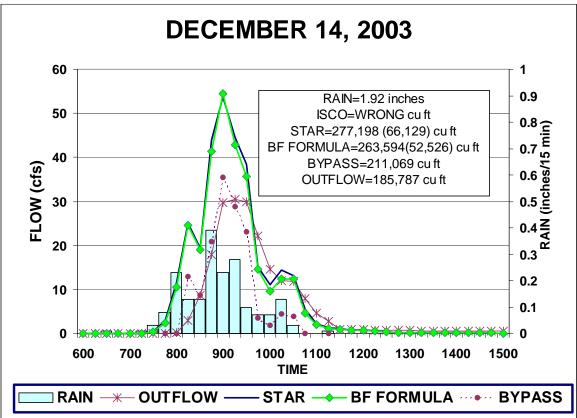
where: Flow in = rain on pond, storm flow and base flow Flow out = flow out of pond (storm flow, base flow and ET) Change in storage=difference between pond levels at from beginning to end of month The error term is caused by leaks , weir obstructions, pipe leaks and other errors

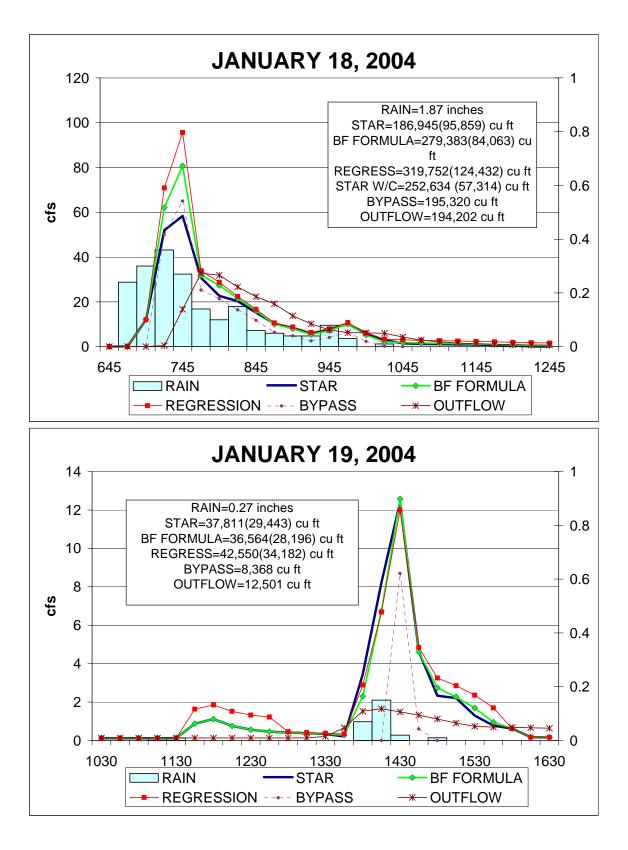
Error term is about 8 to 9% of inflow or outflow on yearly basis, and 13 to 14% during months with broken pipes & unmeasured outflow

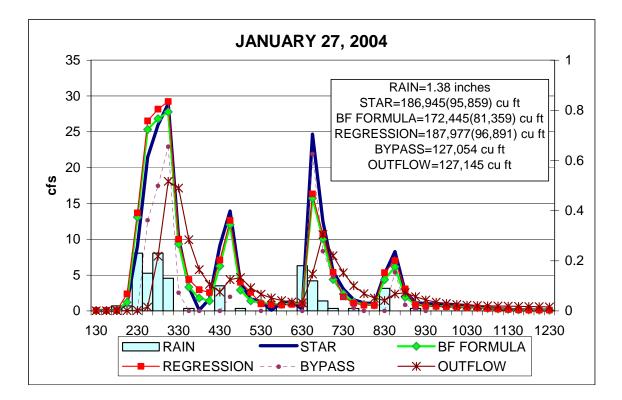

56% of storm flows bypass CDS unit

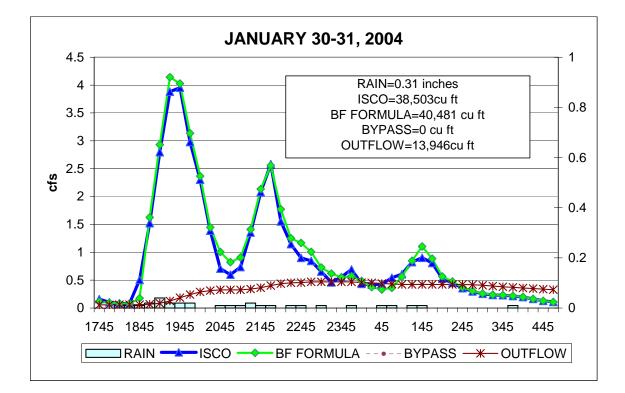

		INFLOW			I	OUTFLOW					REMARKS
POND AREA	RAIN	RAIN	BASE	STORM	BY-PASS	BASE	STORM	ET	STORAGE	ERROR	
46,605			FLOW	FLOW	FLOW	FLOW	FLOW	estimate	loss or gair	ו	
sq. ft	inches	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	
					duplicates						
					not in						
					budget						
November	1.39	5,398	121,751	227,224	55,538	276,627	133,970	12,816	-466	-68,574	Some problem with date and level measurement at outflow
December	1.96	7,612	135,174	270,392	211,086	149,832	185,787	6,991	-5,127	75,695	Developed regression equation to correct ISCO high flow
January	4.35	16,894	164,830	492,383	294,774	278,445	347,794	4,661	6,525	36,683	Removed 1.4 days when no inflow data
February	4.68	18,176	147,992	689,037	264,781	300,900	454,086	6,991	2,051	91,178	Cleaned out CDS which may affect base flow
March	2.07	8,039	163,650	394,038	200,406	194,818	260,007	11,651	932	98,319	Estimated for broken pipe & unmeasured outflow
April	2.35	9,127	137,776	297,860	179,842	159,490	201,977	16,312	3,728	63,256	Estimated for broken pipe & unmeasured outflow
May	1.82	7,068	134,322	180,292	86,718	203,177	111,381	18,642	32,530	-44,048	Writing new CR10 pgm, recalculating offsets, no velocity
June	12.52	48,625	61,217	1,986,186	1,127,403	309,789	1,501,580	20,972	-10,253	273,939	CDS unit clogged. Leaky pipes outflow. New program pro
July*	13.54	52,586	147,157	2,057,218	1,056,309	478,343	1,504,765	22,137	-20,133	271,849	Broken pipes and unmeasured outflow. CDS clogged ofte
August	12.04	46,760	130,287	1,614,266	993,362	453,830	1,075,927	19,807	-6,525	248,274	Part of August storm in Septmeber;CDS clogged
September	14.01	54,411	293,297	2,907,708	1,858,345	376,567	2,764,367	16,312	3,262	94,908	Pipe problem fixed on Sept. 15th.
October	0.80	3,107	271,992	92,775	7,322	386,275	27,203	13,982	3,262	-62,848	Outflow weir often clogged artificially increasing base flow
TOTAL	71.53	277,805	1,909,445	11,209,379	6,335,886	3,568,093	8,568,844	171,273	9,787	1,078,631	

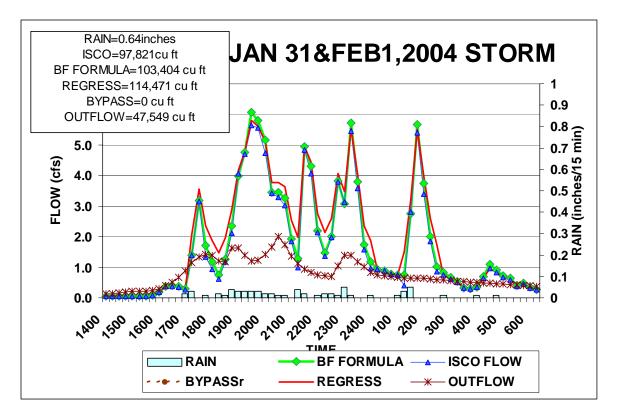

Storage: negative = gain; positive = loss

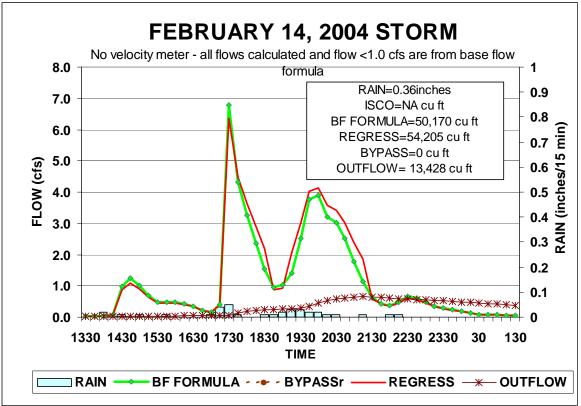

July = bubbler line smashed during hurricane (July 19-20, 2004) complicated inflow measurements. Some adjustments made

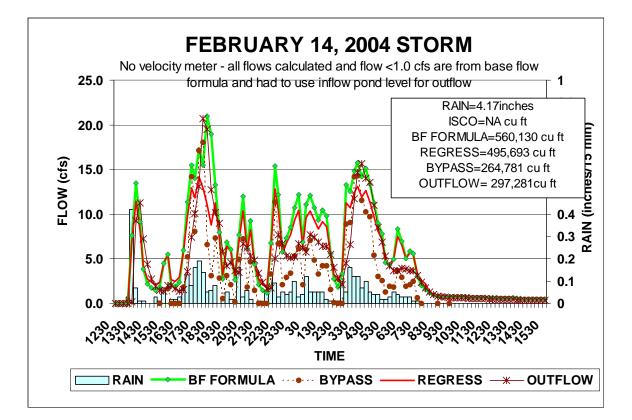

Southwest Florida Water Management District, Stormwater Program

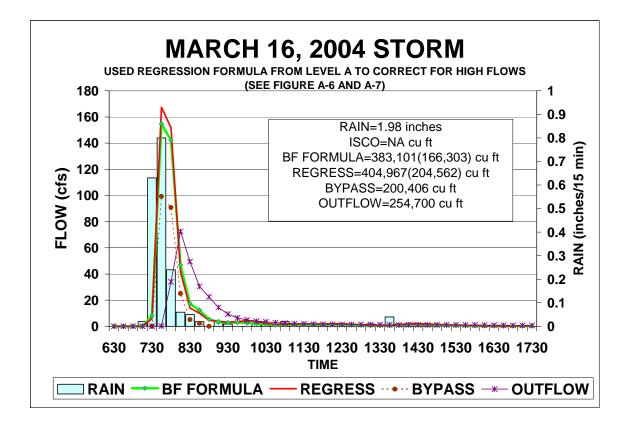


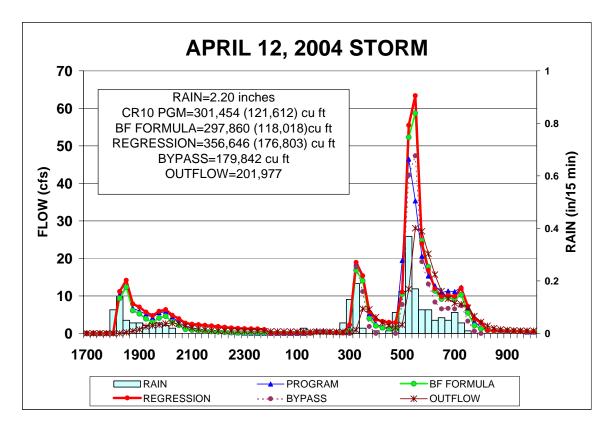


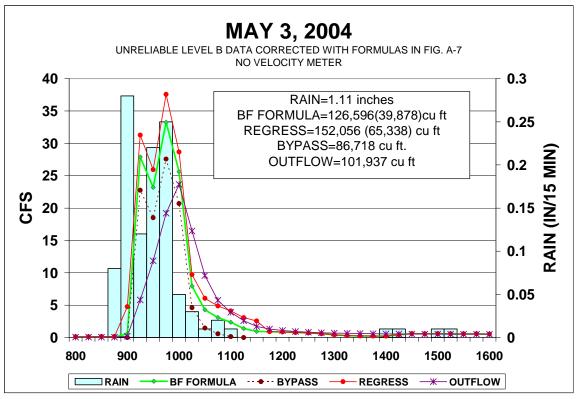


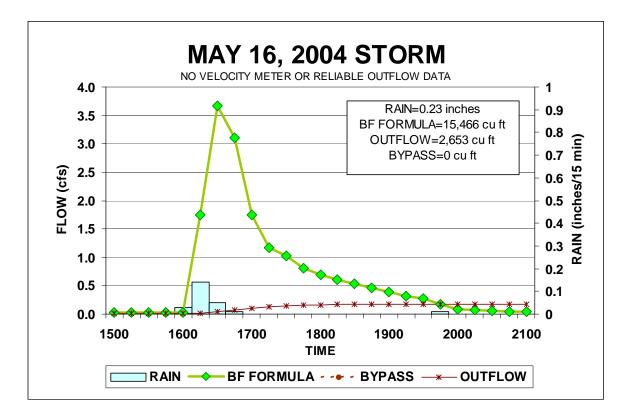


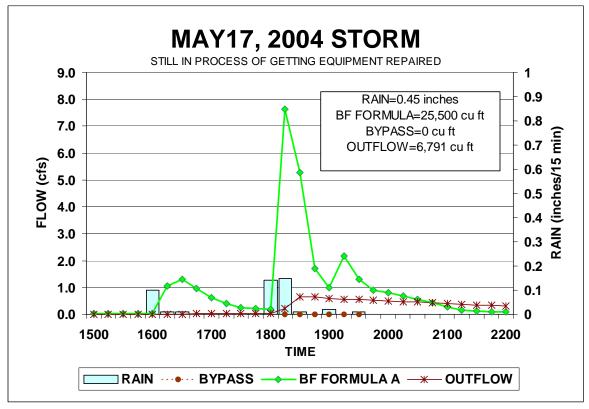


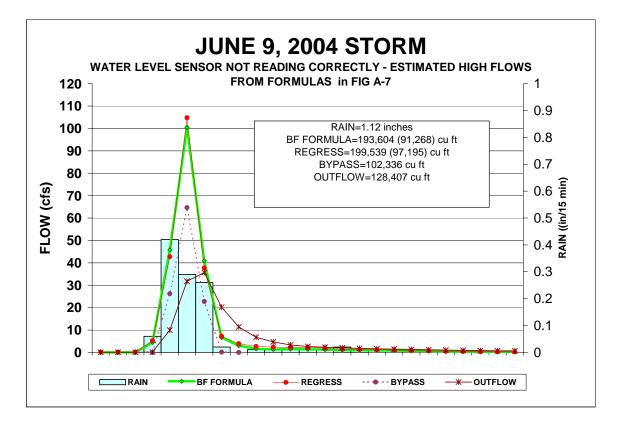


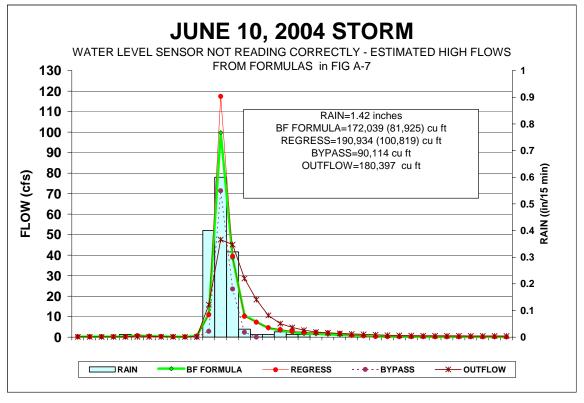


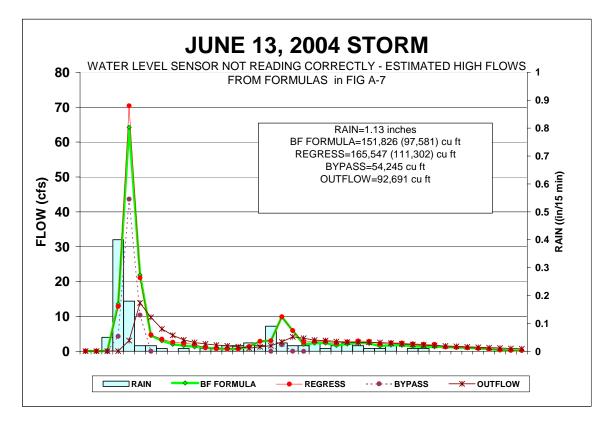


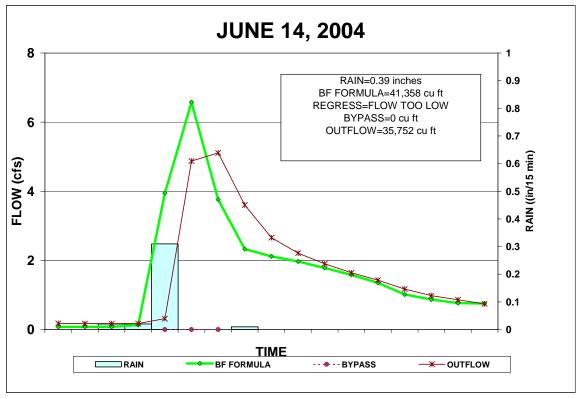


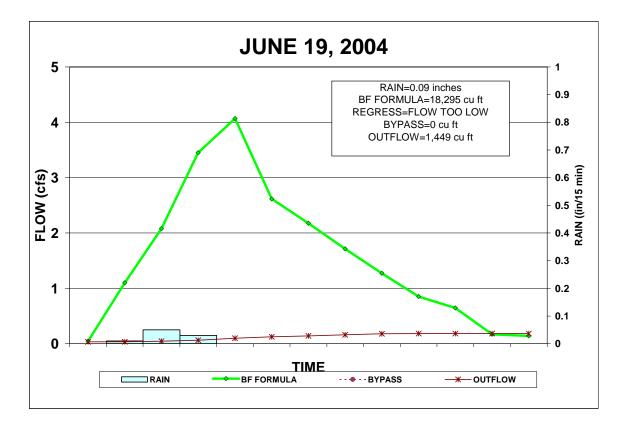


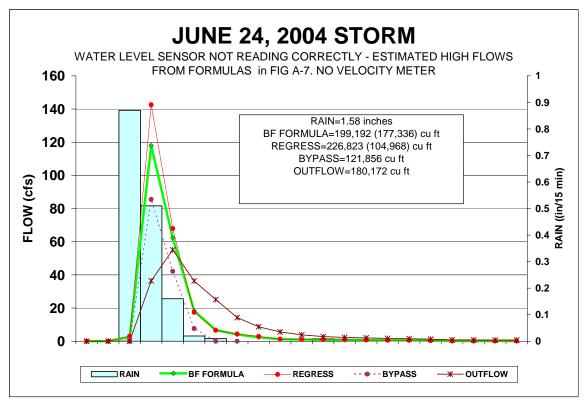


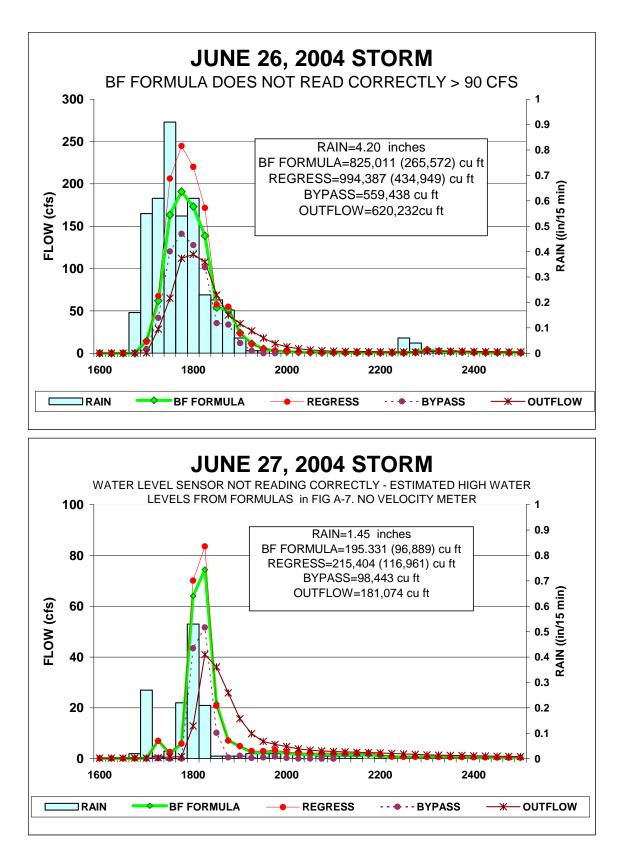


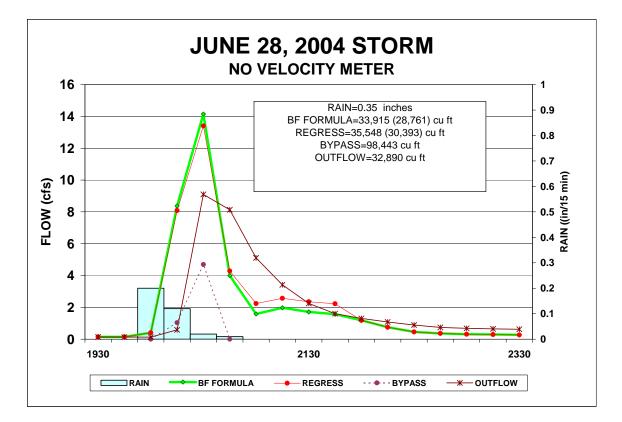

Southwest Florida Water Management District, Stormwater Program

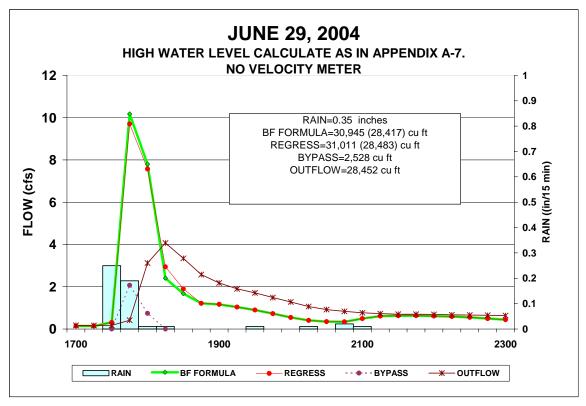


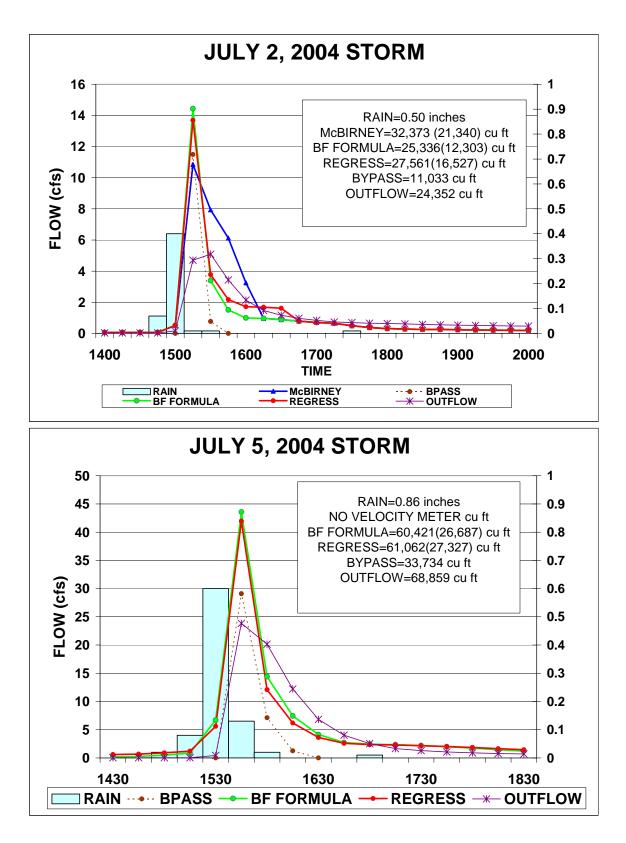


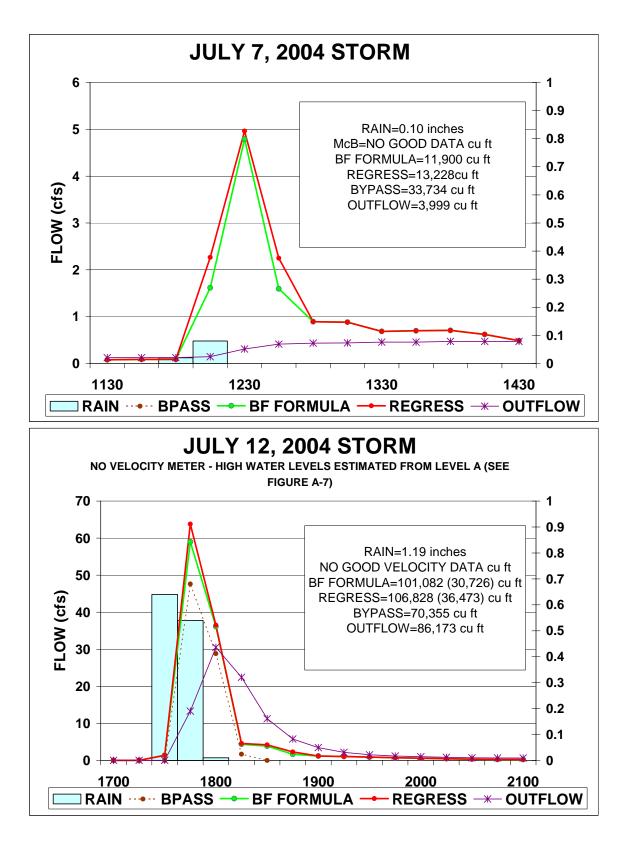


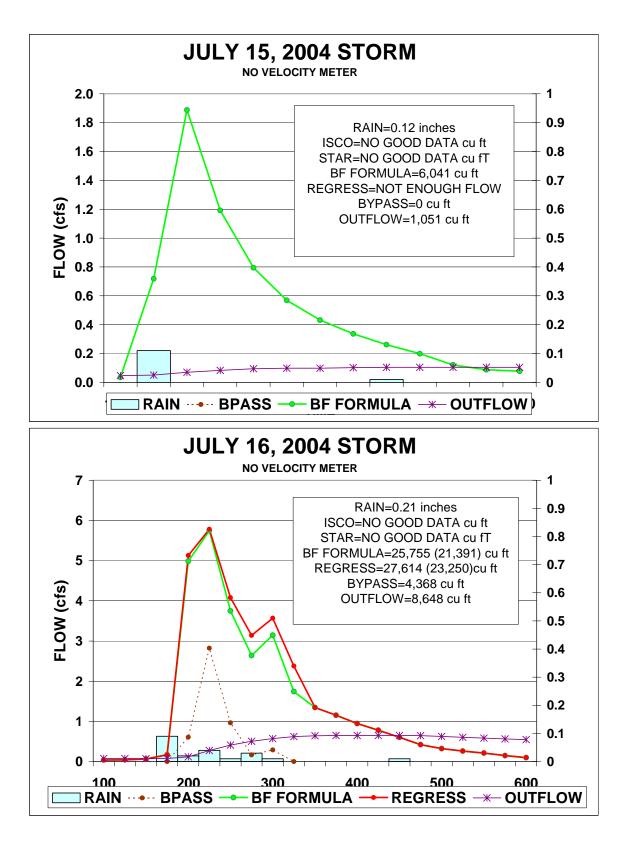


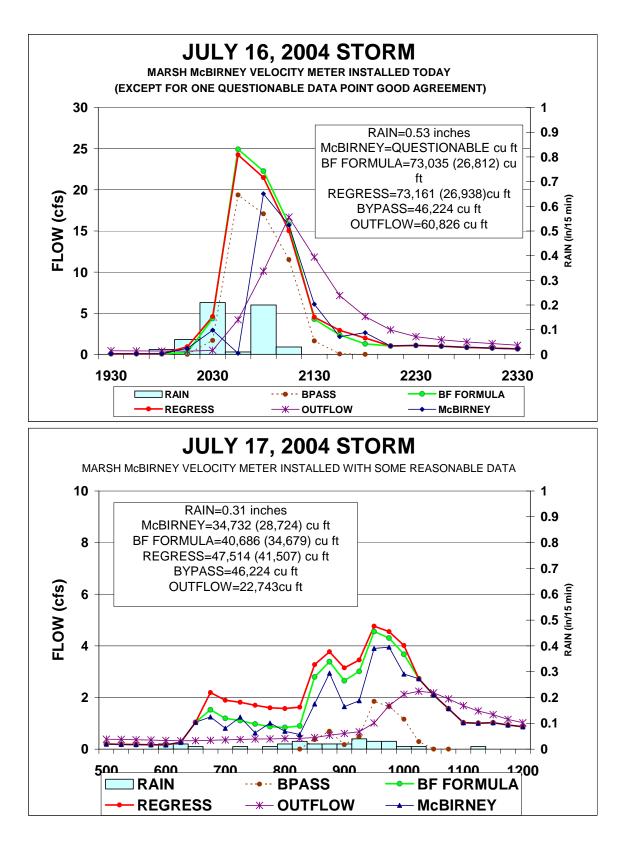


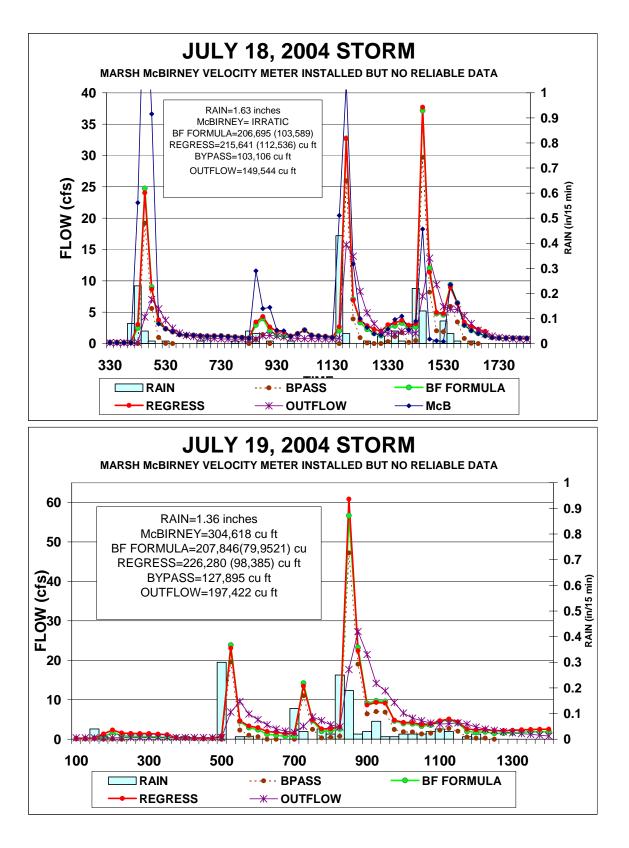


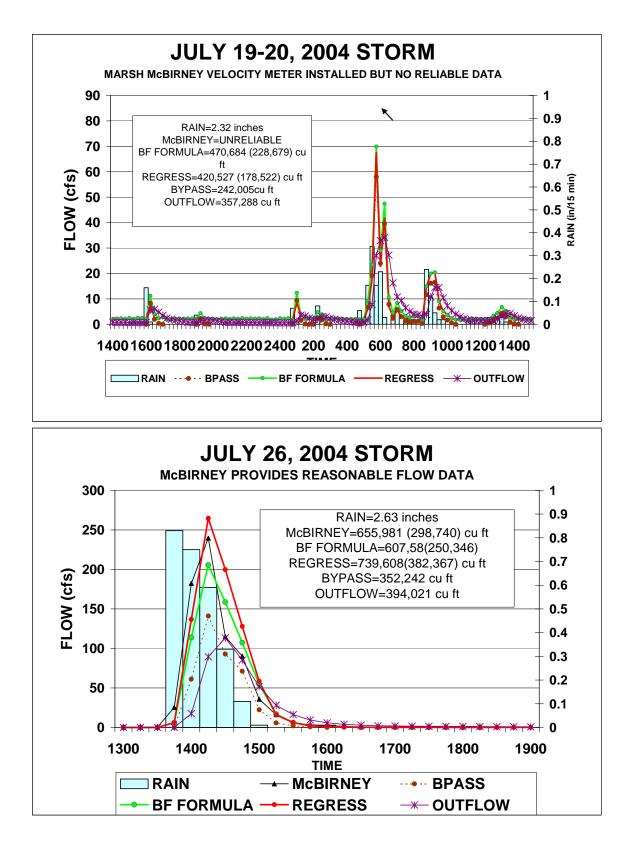


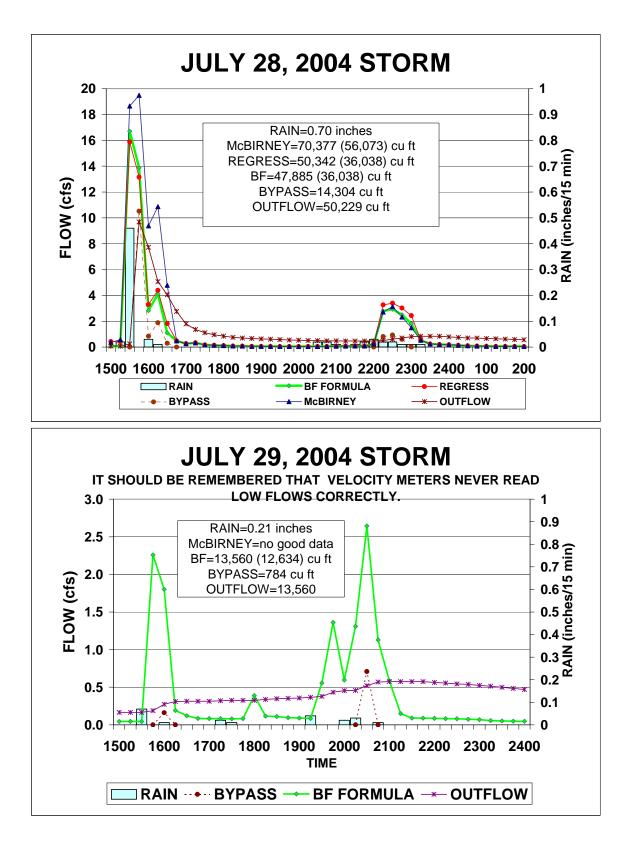


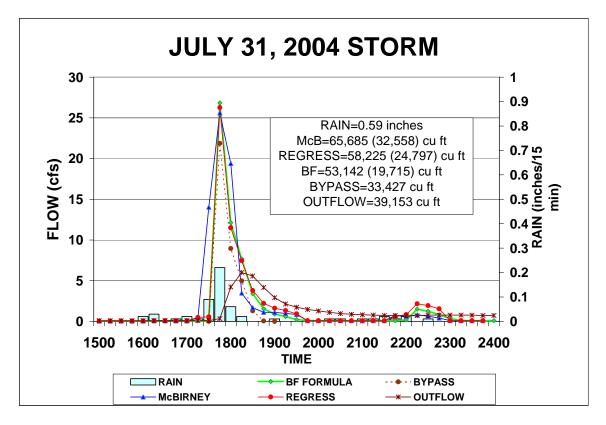


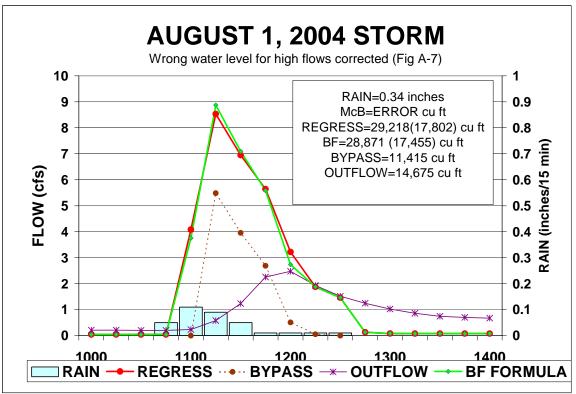


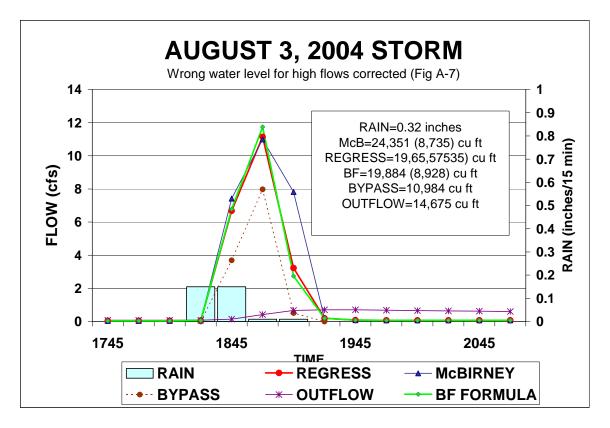


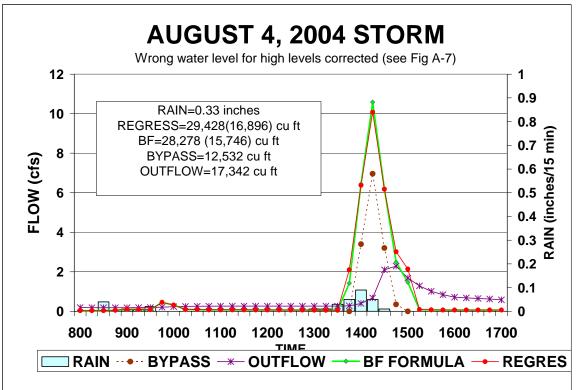


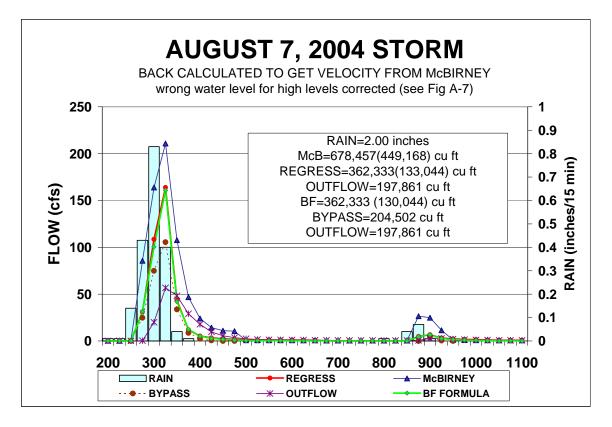


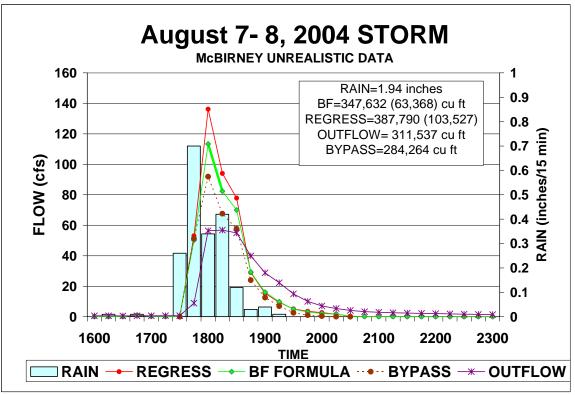


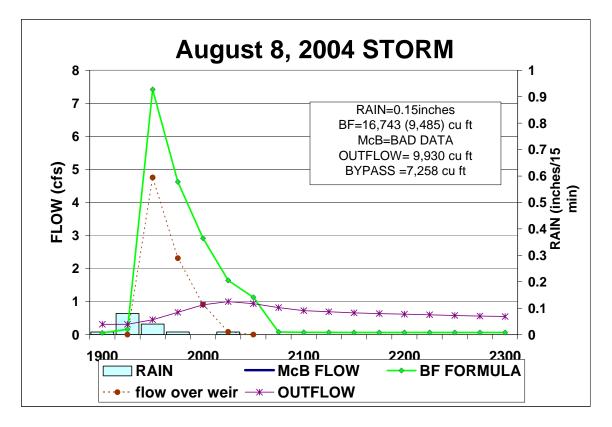


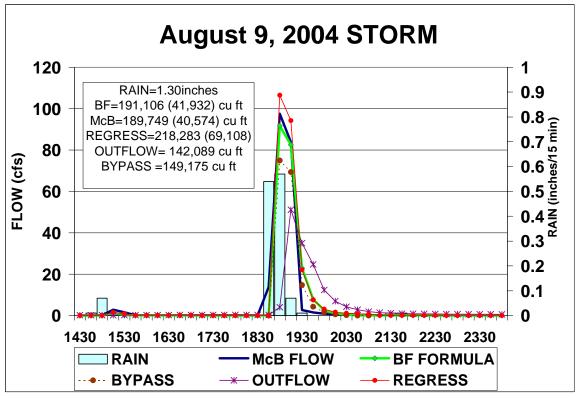


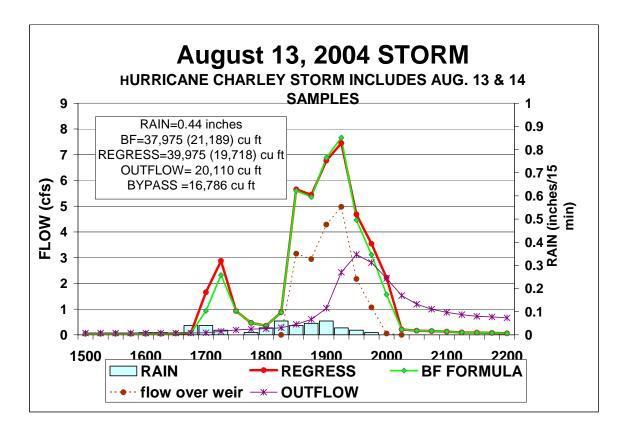


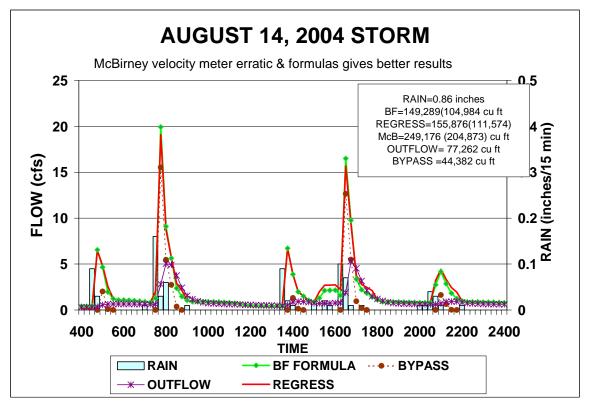


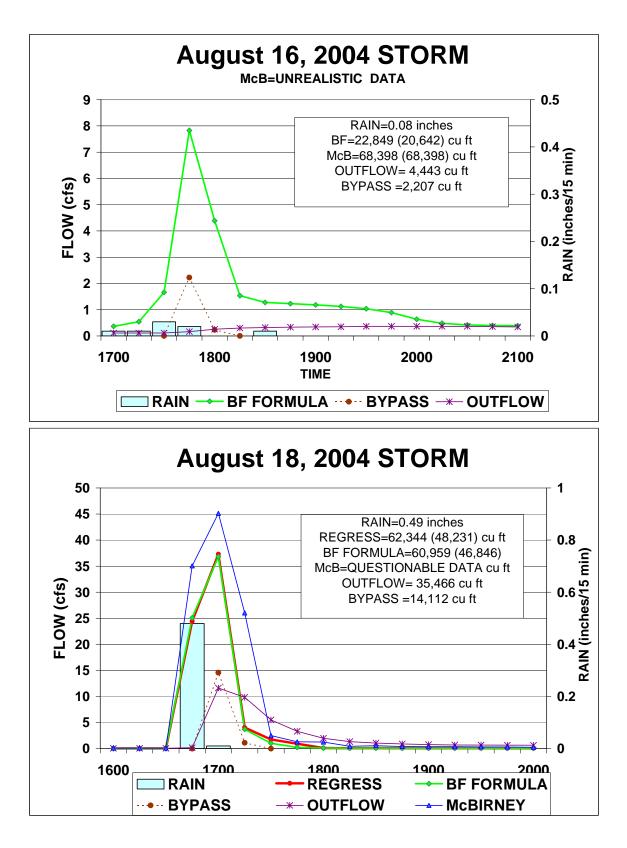


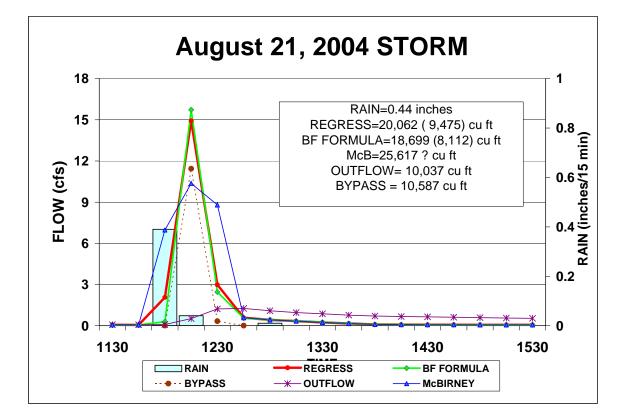


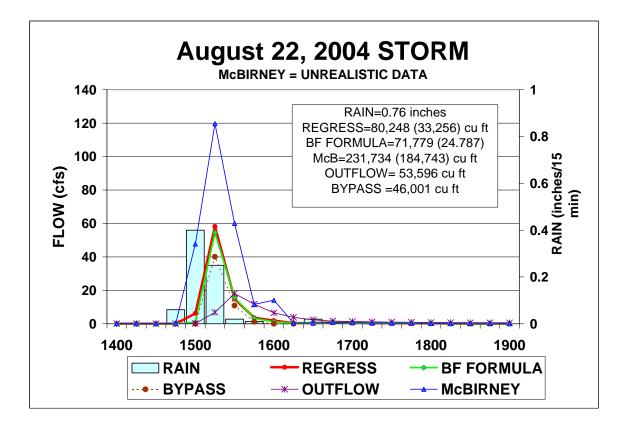


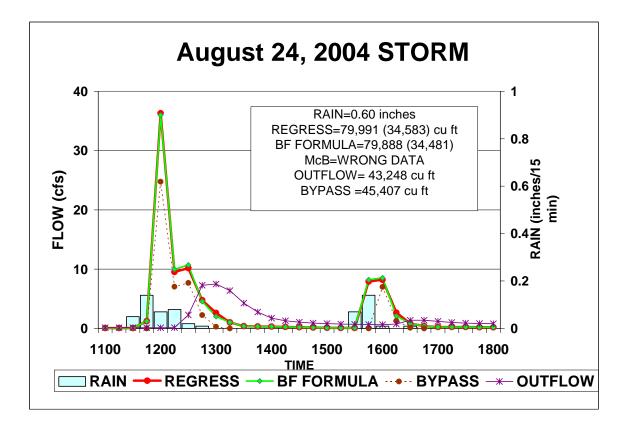


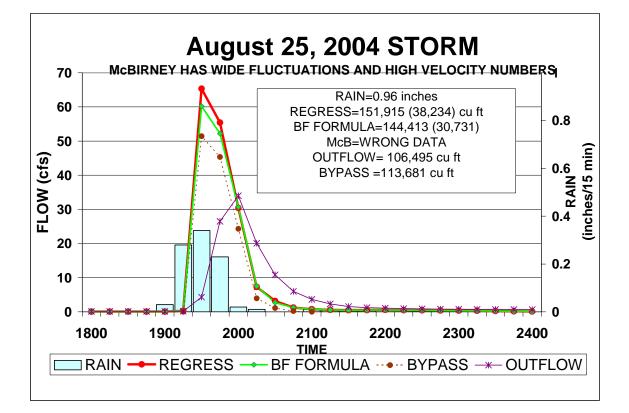


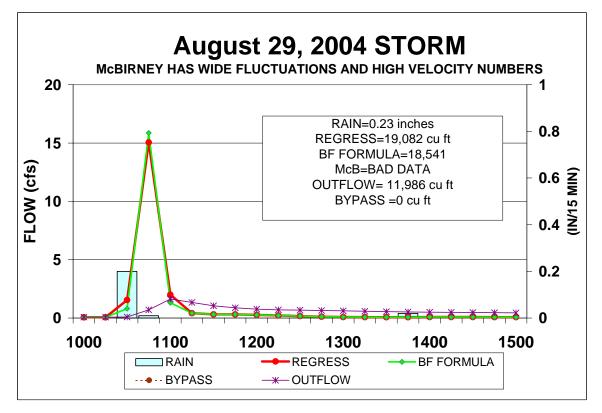


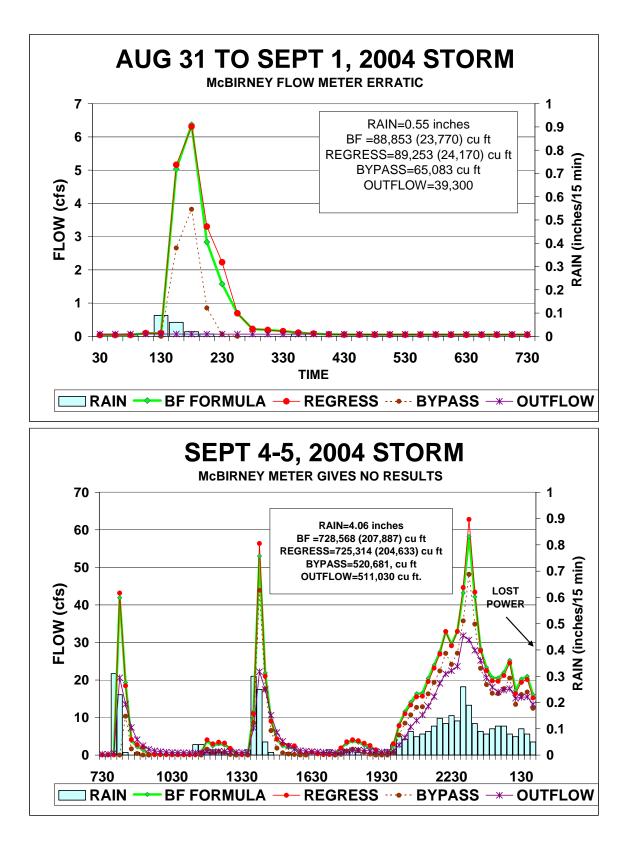


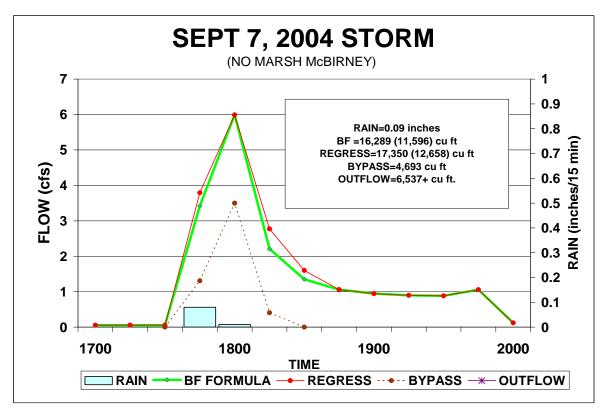


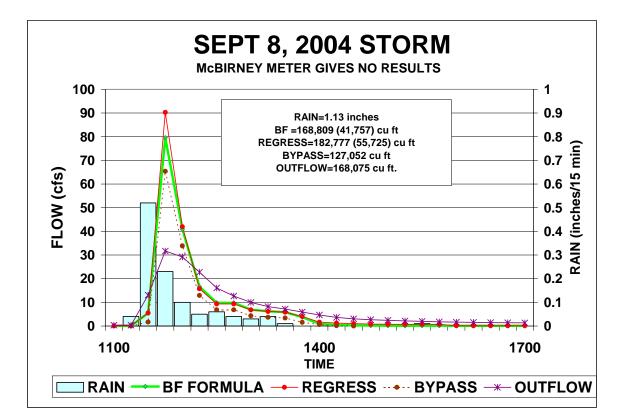


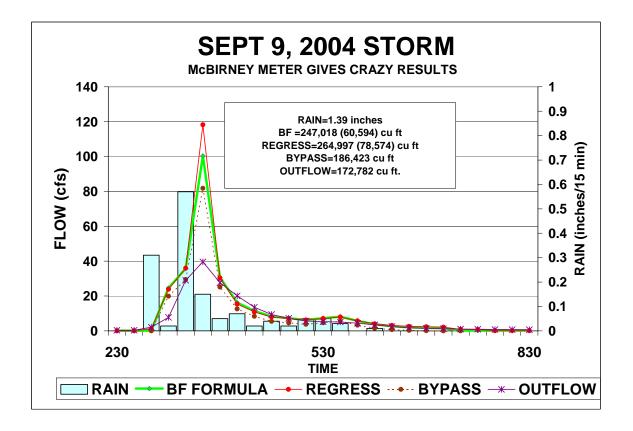


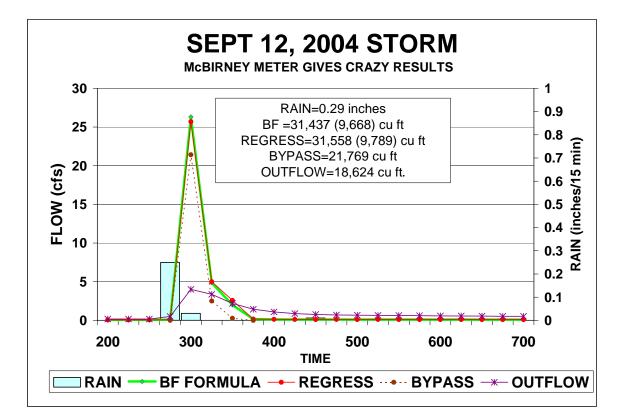


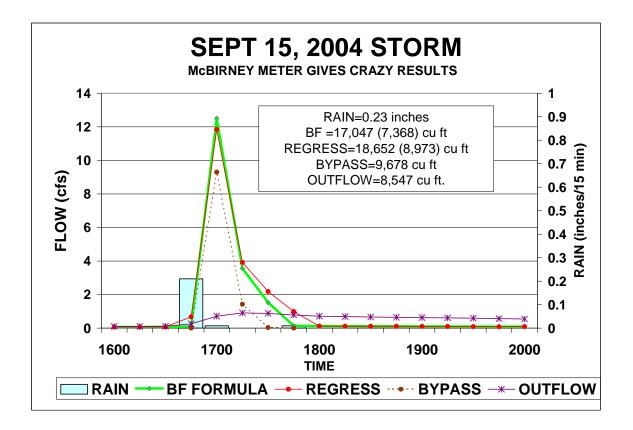


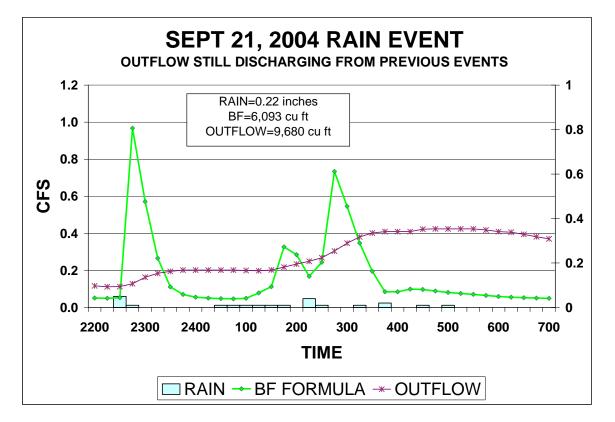


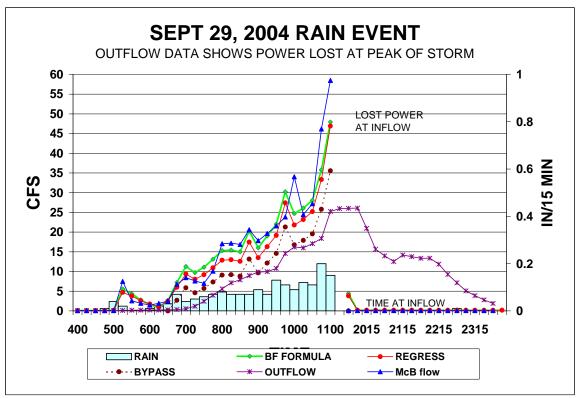


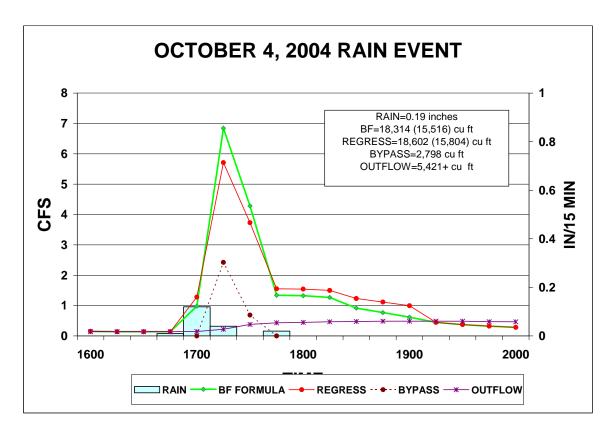


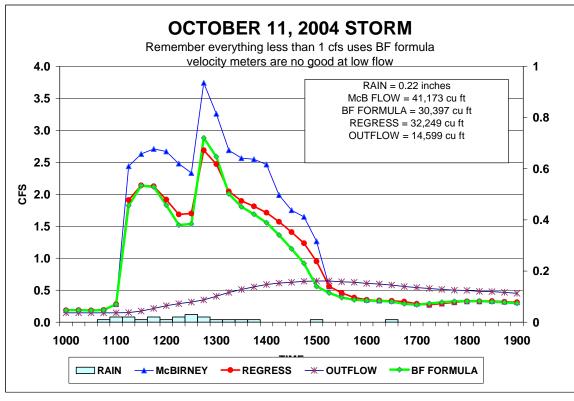


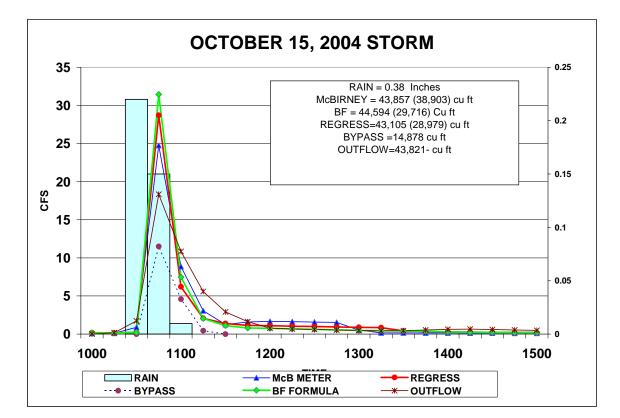










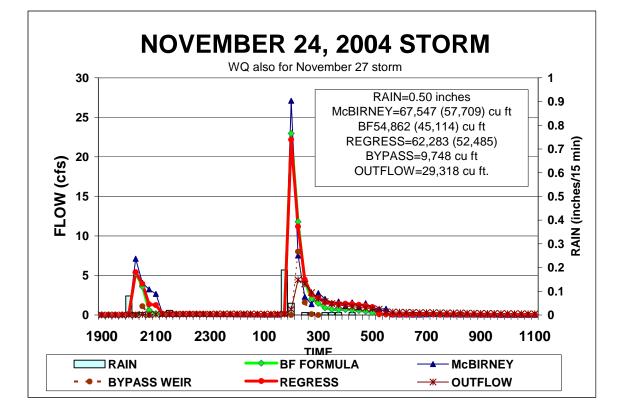


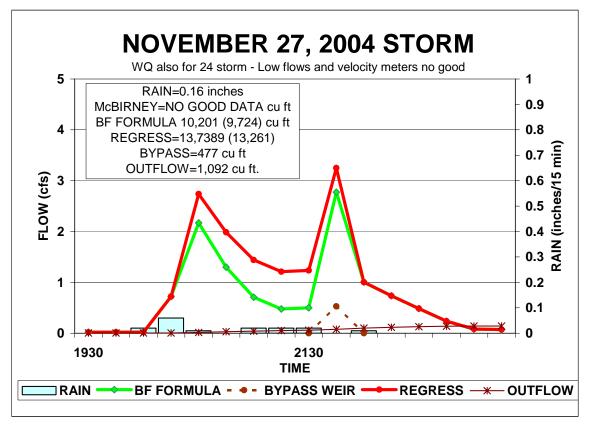
WATER BUDGET CALCULATIONS FOR 2004-05

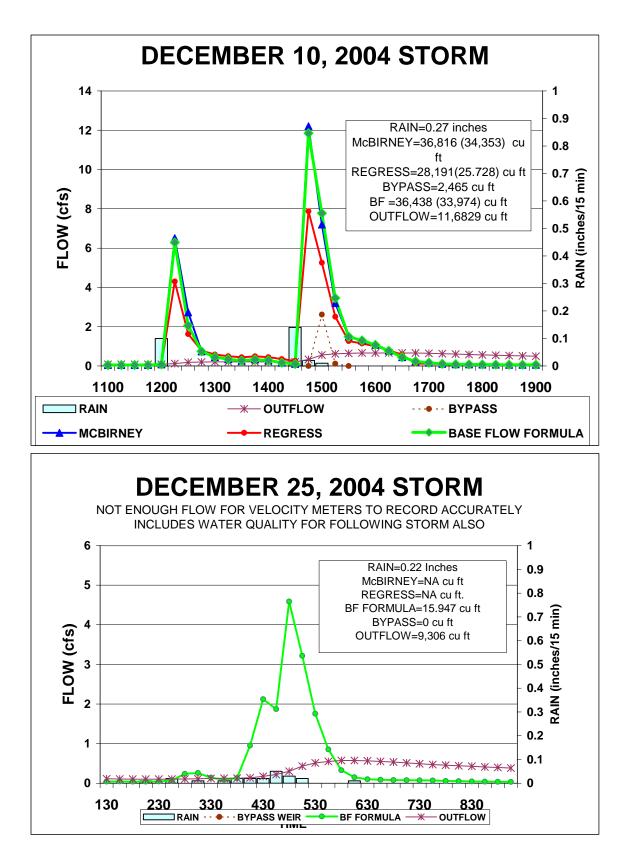
Bypass flow is the storm flow that bypasses the CDS unit and discharges over weir All flows less than 1 cfs were calculated using base flow weir (see appendix A). In figures, total flow is shown first and the amount entering the CDS is in parentheses Equipment failures after March necssitated developing formulas from water level (see Appendix A) The area of the pond used in the calculations was 46,605 sq. ft. Installed separate refrigerated samplers to measure base flow

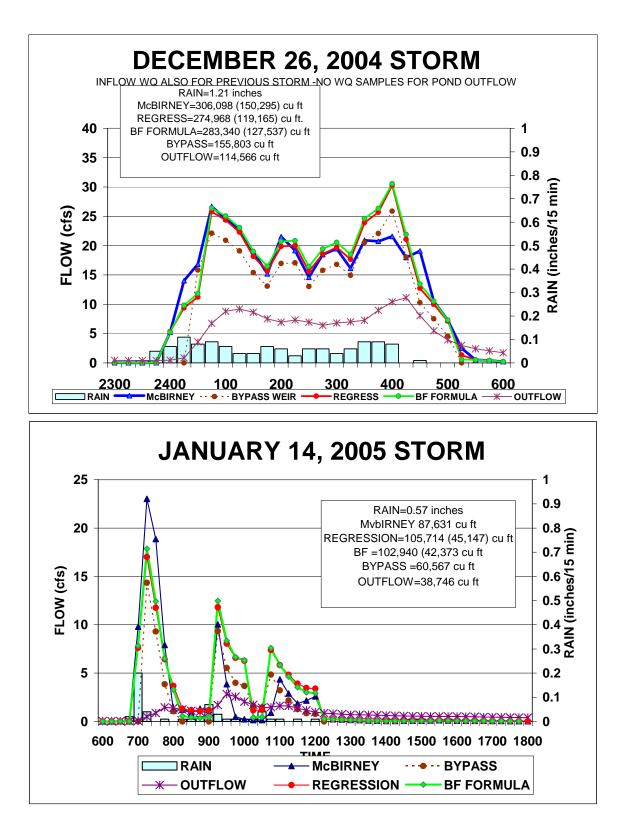
Leakey pipes discharging unmeasured outflow permanently fixed

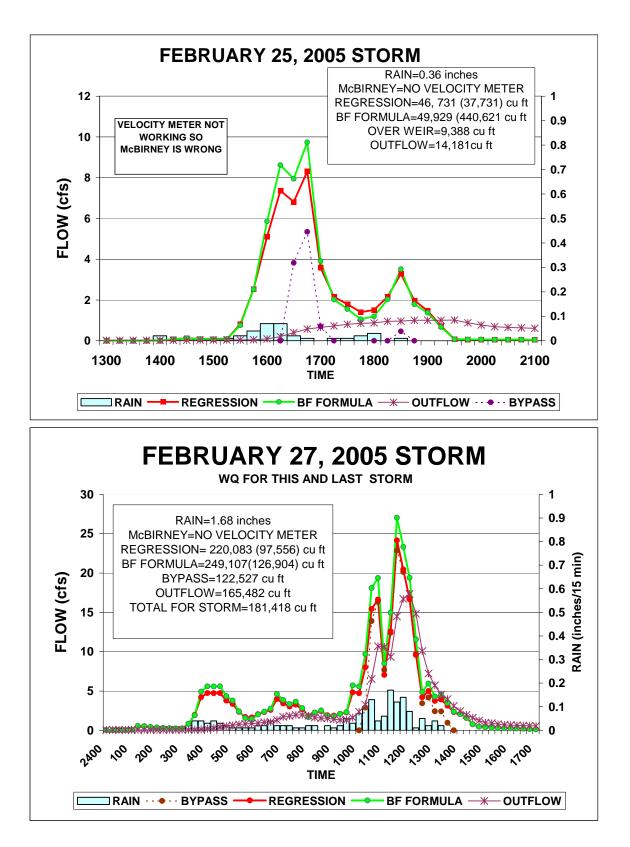
The V-notch weirs (in and out) used to calculate base flow were frequently clogged with debris. Storm flow measurements were more accurate than base flow because of debris problems. ISCO, STAR, McBIRNEY represent various sensors used to measure velocity and water levels. BF FORMULA and REGRESS indicate formulas used to estimate flow (see Appendix A) BF FORMULA under estimates flow when pipe is more than half full (level > 3ft). WATER BUDGET EQUATION: FLOW IN - FLOW OUT = CHANGE IN STORAGE

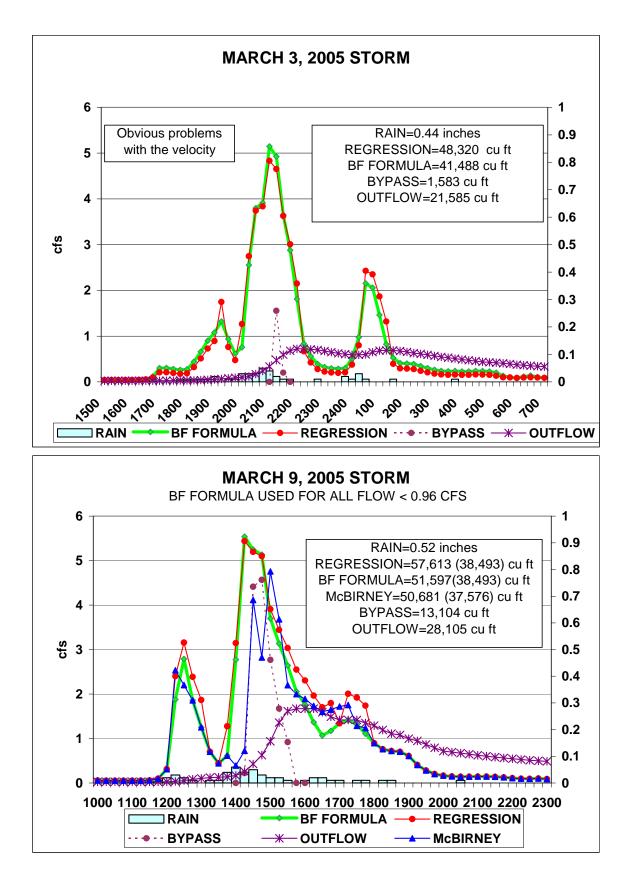

 where: Flow in = rain on pond, storm flow and base flow
 Flow out = flow out of pond (storm flow, base flow and ET)
 Change in storage=difference between pond levels at from beginning to end of month
 The error term is caused by weir obstructions, faulty sensors, offset errors and other problems

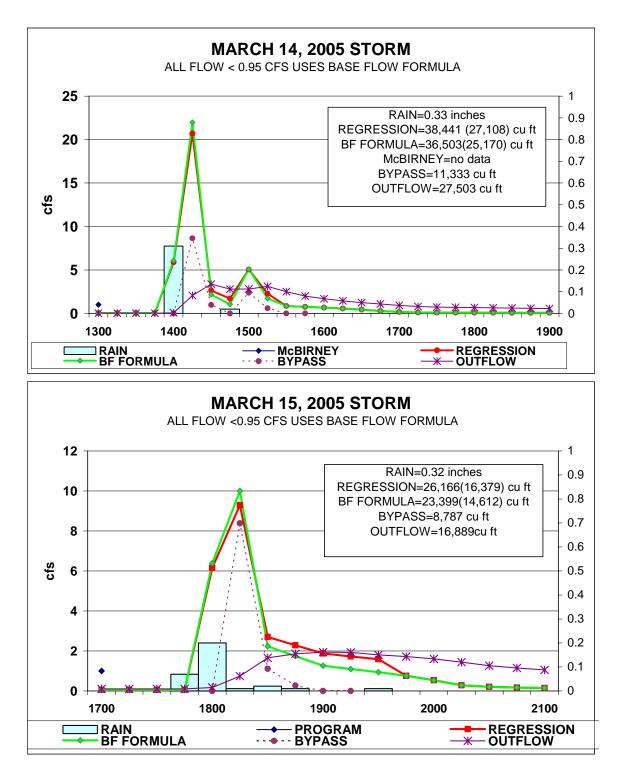

Error term is about 0.46% of inflow or outflow on yearly basis 46% of storm flows bypassed CDS unit on a yearly basis

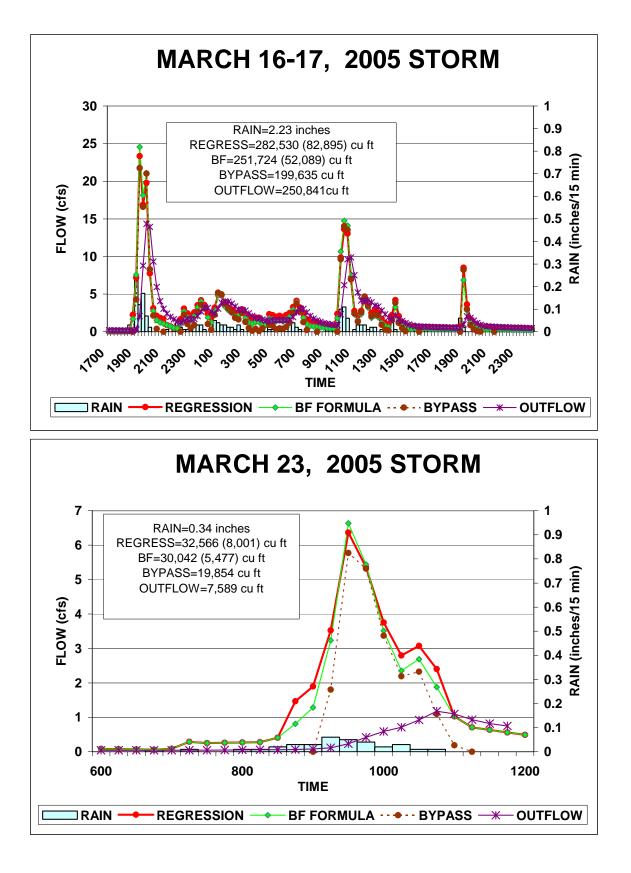

		INFLOW				OUTFLOW					REMARKS
POND AREA	RAIN	RAIN	BASE	STORM	BY-PASS	BASE	STORM	ET	STORAGE	ERROR	
46,605			FLOW	FLOW	FLOW	FLOW	FLOW	estimate	loss or gain	n	
sq. ft	inches	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	cu ft	
					duplicates						
					not in						
					budget						
November	0.75	2,913	72,835	70,517	10,225	105,177	30,489	12,816	9,787	-12,005	Making adjustments for field measurements
December	1.79	6,952	241,985	297,413	158,226	392,387	135,555	6,991	932	10,485	Used new offsets to reflect field measurements for base fl
January	0.67	2,602	49,308	104,327	60,567	107,625	38,745	4,661	5,127	80	No velocity meter (sent for repairs)
February	2.08	8,078	148,721	282,935	131,835	192,251	212,824	6,991	932	26,736	Cleaned CDS and lost two days of data
March	6.53	25,361	313,651	552,106	254,295	438,720	448,708	11,651	466	-8,427	Sensor drift problems (see Appendix A).
April	4.02	15,613	100,412	701,479	179,842	304,712	459,512	16,312	3,728	33,240	Change offsets to reflect all field measurements
May	3.95	15,341	104,623	548,190	230,347	205,280	435,798	18,642	27,870	-19,436	Used new offsets for all flows. No velocity meter
June	16.17	62,800	249,415	2,582,791	1,167,330	582,613	2,257,920	20,972	-10,253	43,754	Velocity meter gives up entirely Only used formulas
July	10.59	41,129	298,584	1,916,365	900,299	780,742	1,407,120	22,137	13,982	32,097	Problems with pond level which may affect outflow volume
August	10.05	39,032	335,558	1,514,062	835,117	677,218	1,196,622	19,807	13,795	-18,791	Some problems with level readings in front of CDS
September	0.98	3,806	165,055	71,867	7,962	220,191	21,895	16,312	-17,570	-100	Data logger problems, no data for nine days
October	3.53	13,710	154,567	460,234	232,332	261,710	391,696	13,982	-4,567	-34,310	Misses 2.5 days of data
TOTAL	61.11	237,336	2,234,714	9,102,286	4,168,377	4,268,626	7,036,884	171,273	44,228	53,324	

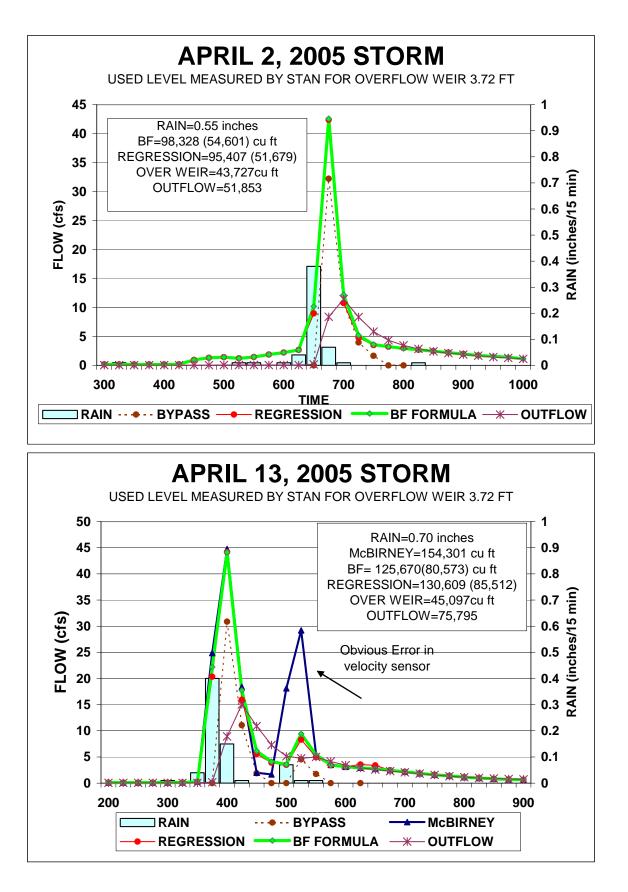

Storage: negative = gain; positive = loss

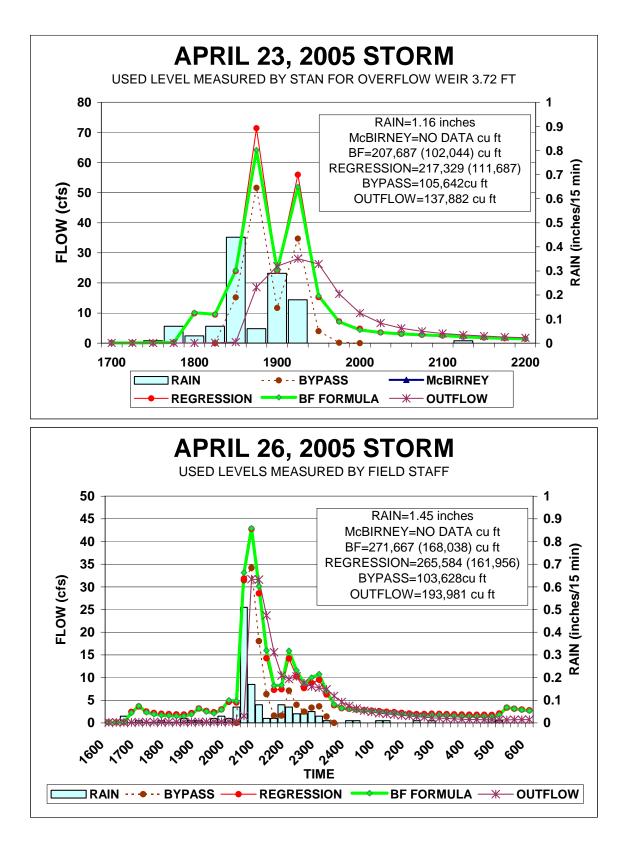

Southwest Florida Water Management District, Stormwater Program

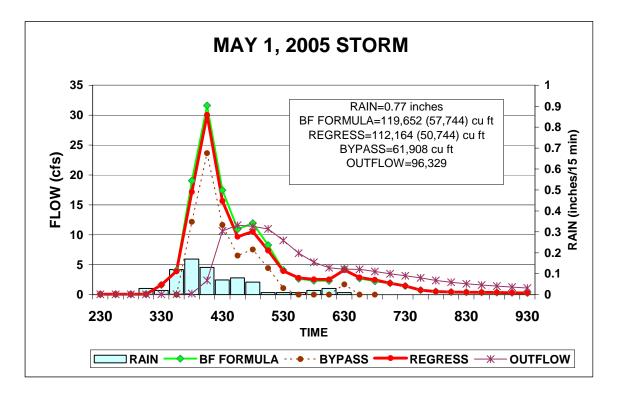


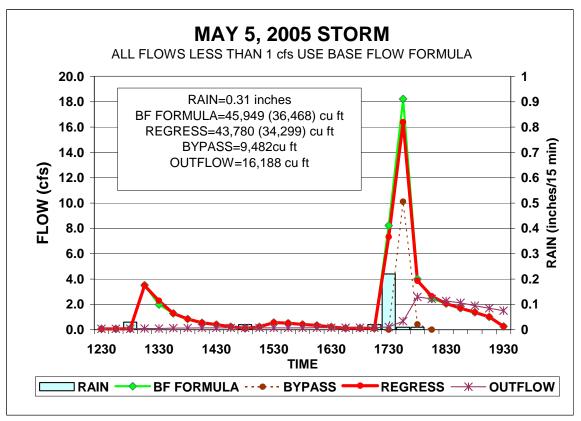


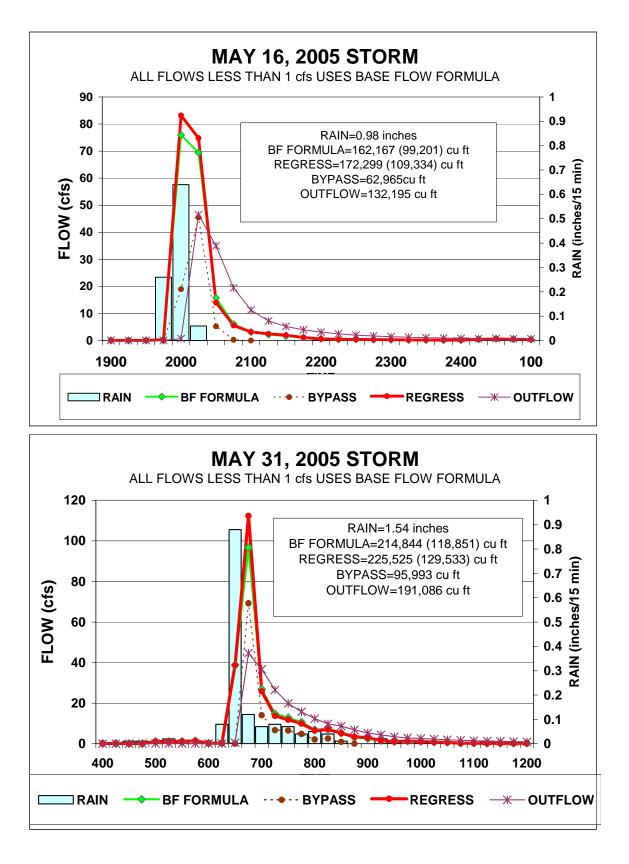


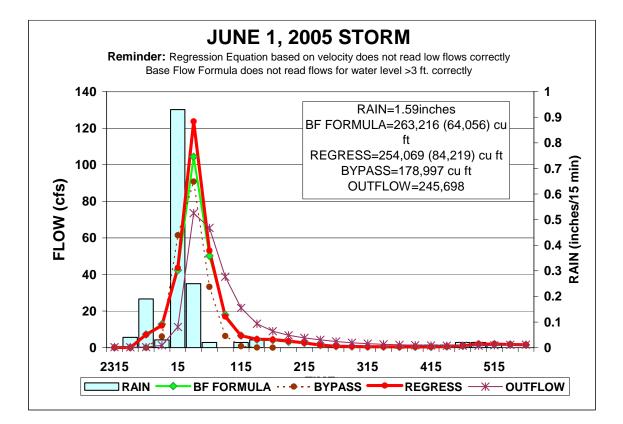


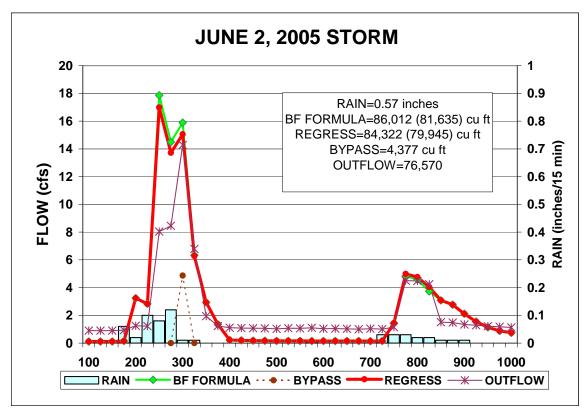


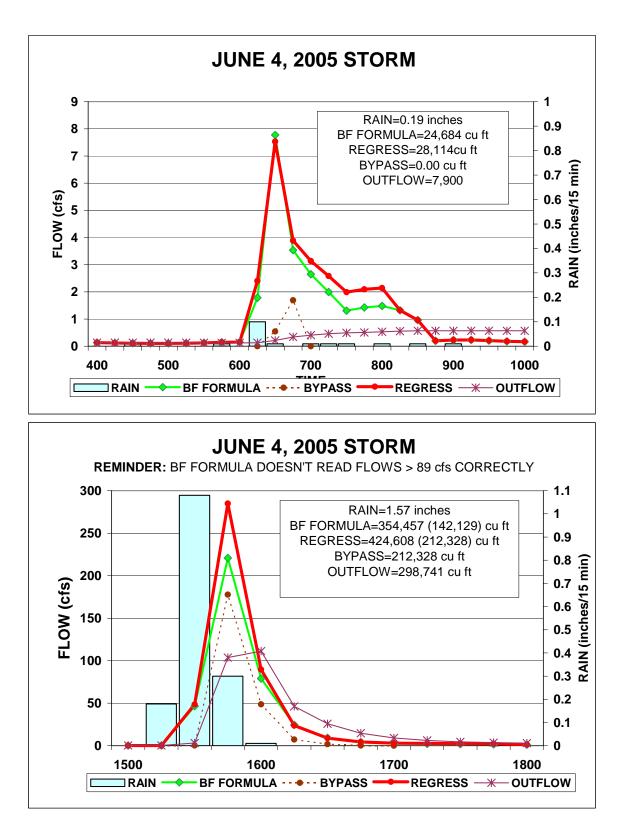


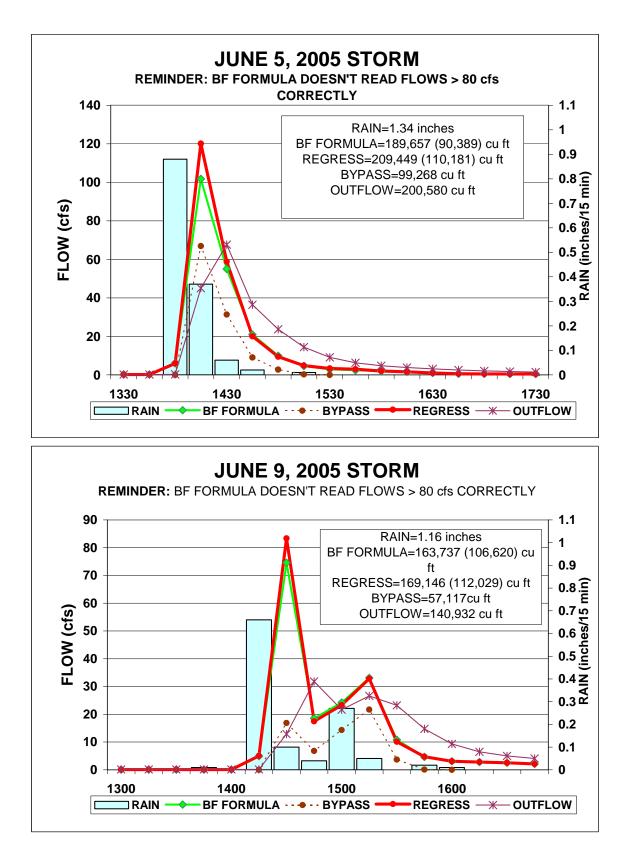


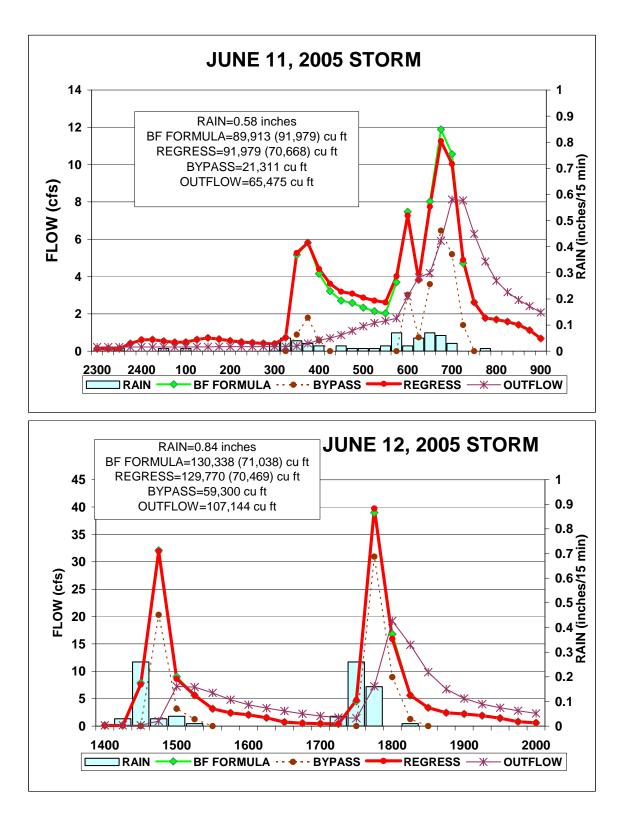


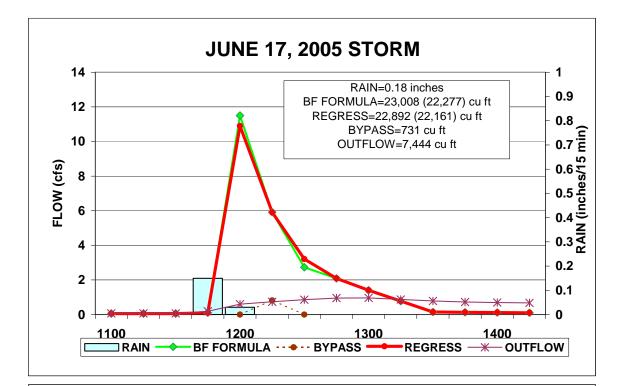


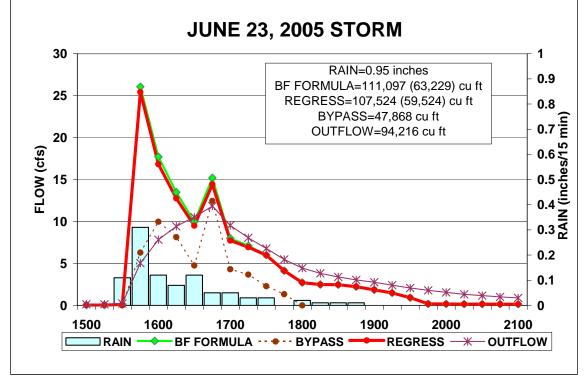


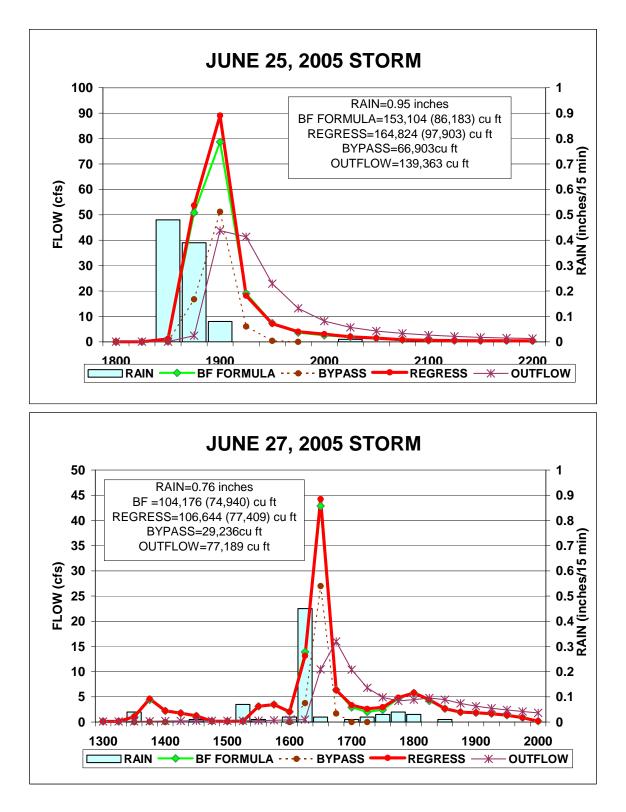


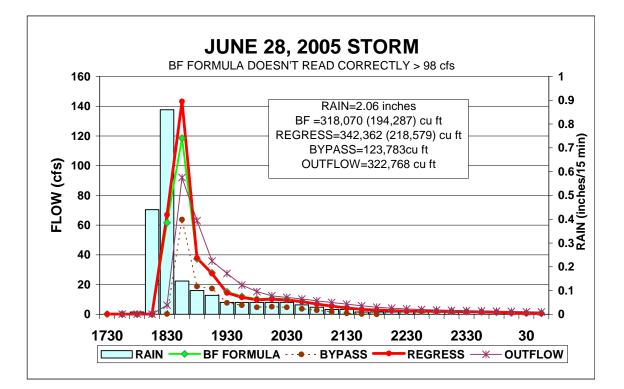


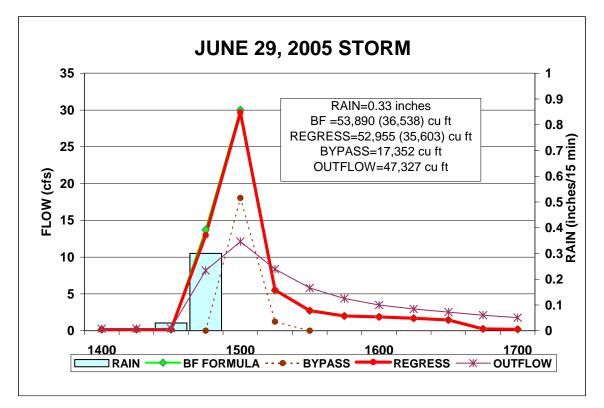


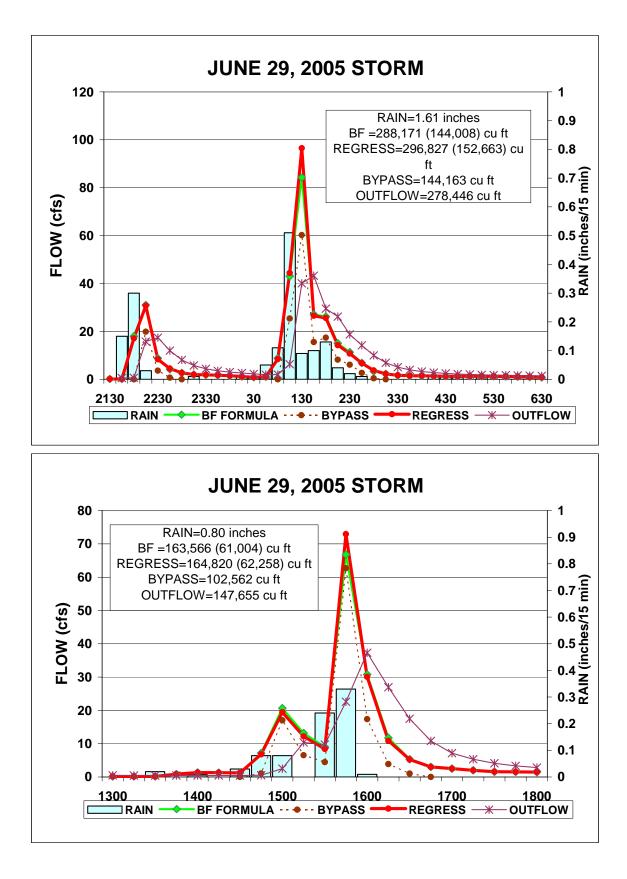


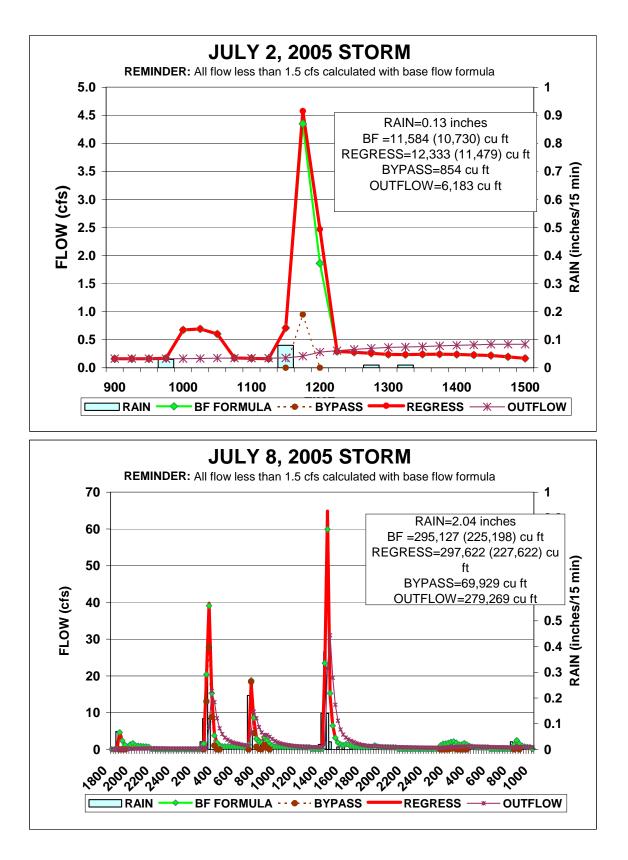

Southwest Florida Water Management District, Stormwater Program

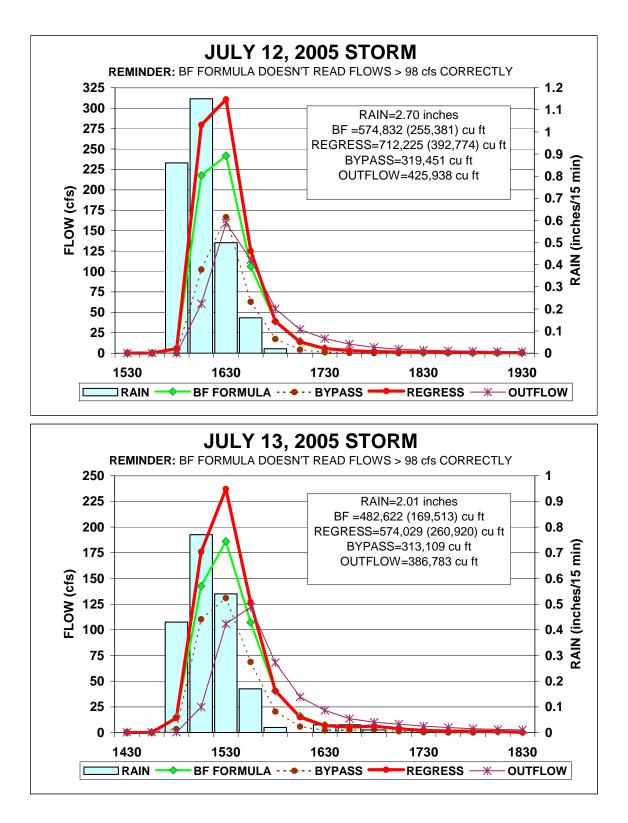


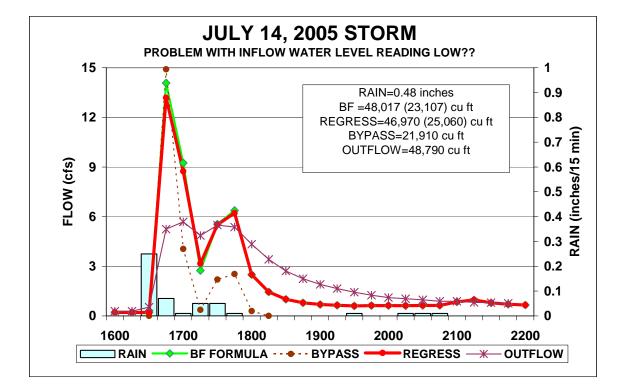


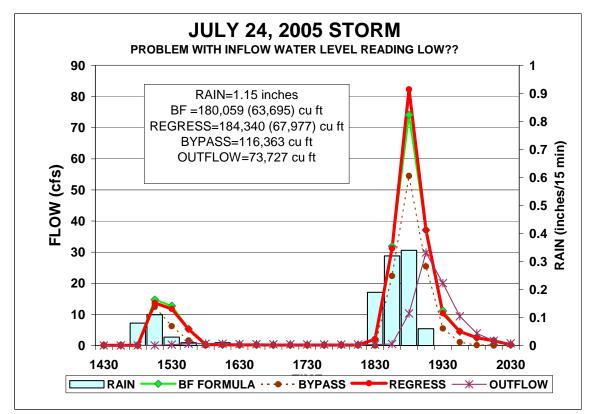


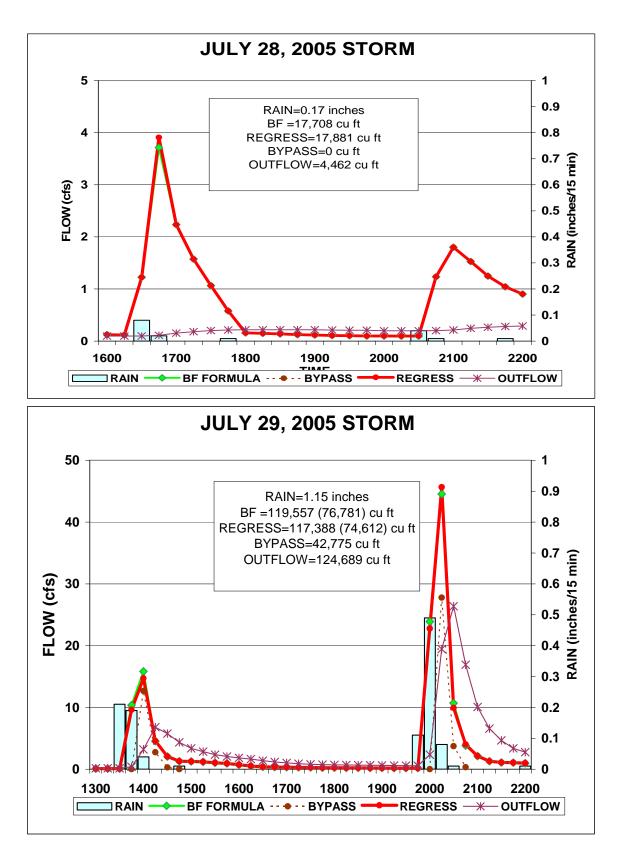


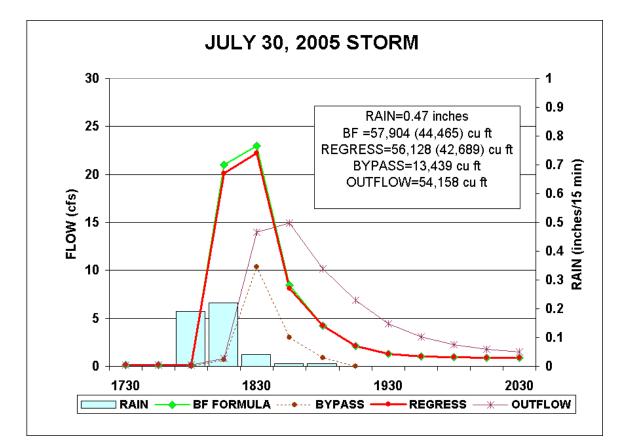


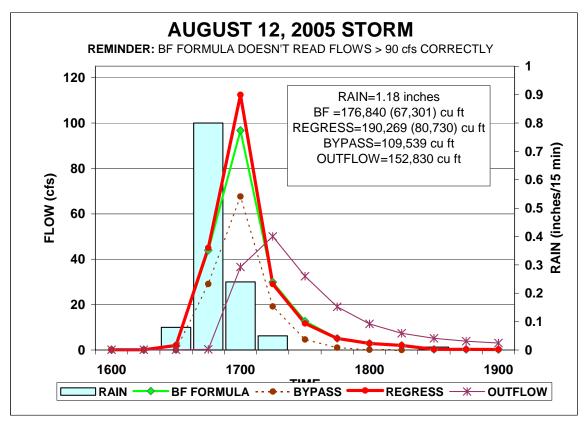


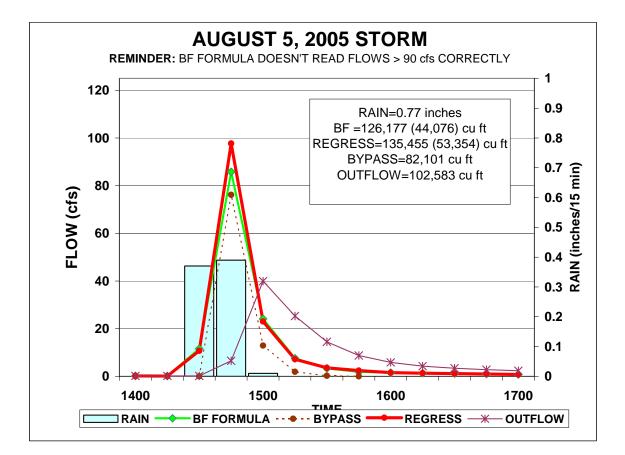


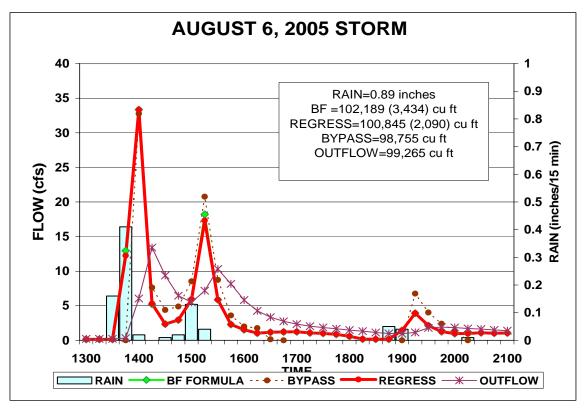


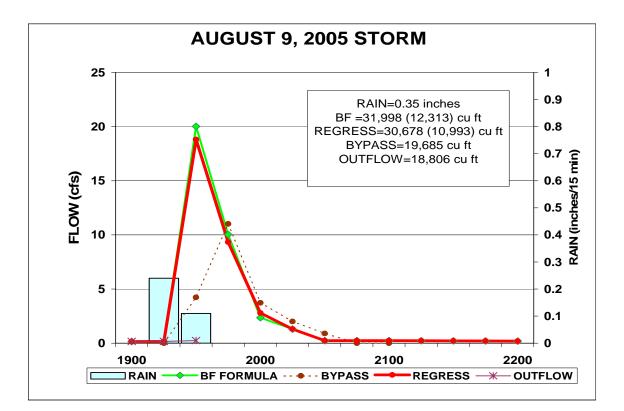


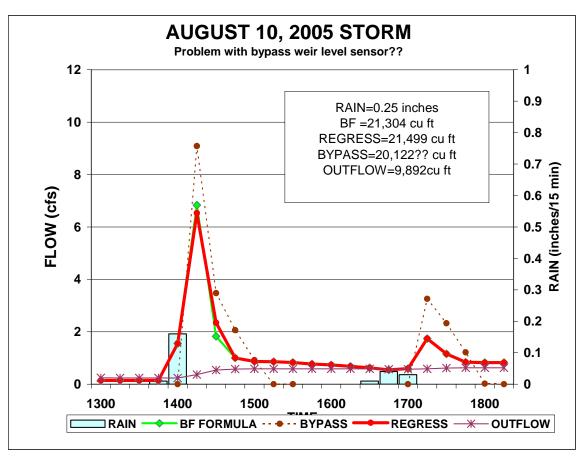


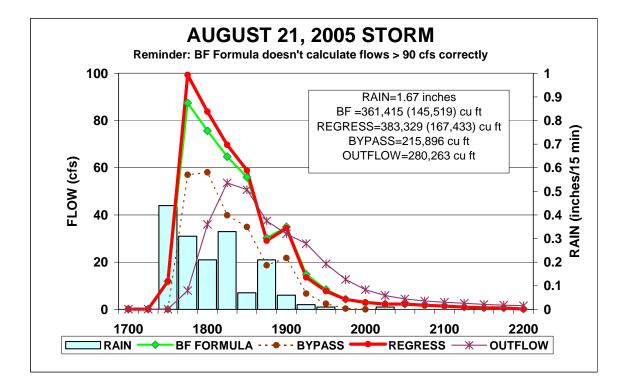


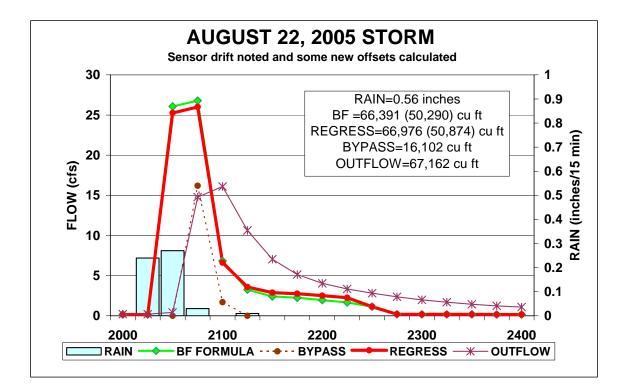

Southwest Florida Water Management District, Stormwater Program

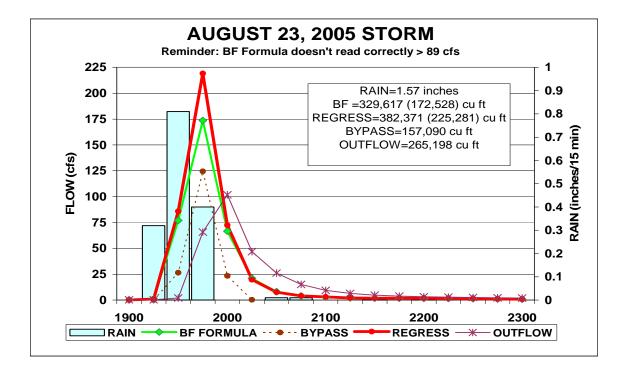


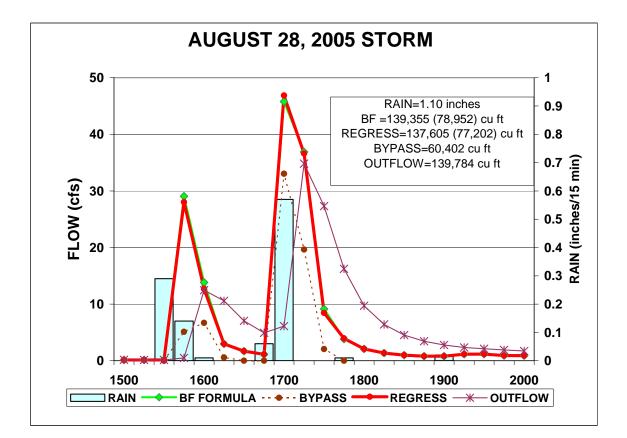


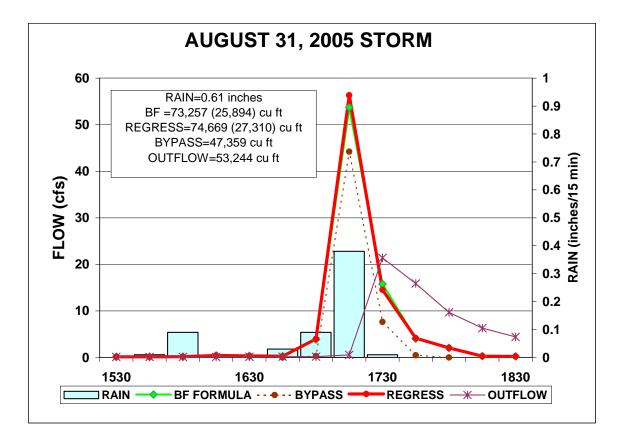



Southwest Florida Water Management District, Stormwater Program









APPENDIX E

WATER QUALITY CONCENTRATIONS

		Amn	nonia			Nitrate	+ Nitrite			Organic	Nitroger	n l		Total N	litrogen	
			Nitrogen				Nitrogen				Nitrogen	-				
STORM	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
FLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW
Sample	30	32	32	30	30	32	32	30	31	32	32	30	30	32	32	30
Mean	0.213	0.040	0.032	0.085	0.226	0.450	0.379	0.133	0.066	0.571	0.725	1.096	0.507	1.061	1.136	1.314
Median	0.156	0.017	0.016	0.026	0.179	0.441	0.378	0.097	0.060	0.559	0.602	0.926	0.443	1.105	1.075	1.180
St. Dev.	0.182	0.057	0.043	0.176	0.166	0.232	0.204	0.140	0.117	0.297	0.336	0.720	0.366	0.287	0.317	0.830
Max	0.655	0.205	0.160	0.881	0.742	1.010	0.819	0.607	0.347	1.256	1.495	3.837	1.740	1.600	1.900	4.750
Min	0.032	0.003	0.003	0.006	0.056	0.007	0.006	0.005	-0.396	-0.427	0.264	0.314	0.042	0.235	0.600	0.480
C.V.	0.854	1.411	1.355	2.053	0.737	0.517	0.539	1.054	1.777	0.520	0.463	0.657	0.721	0.271	0.279	0.632
EFF% (N			22%	-170%			16%	65%			-27%	-51%			-7%	-16%
EFF% (N			6%	-65%			14%	74%			-8%	-54%			3%	-10%
	,	Ortho-Ph				Total Ph				Sus	pended :			h	lagnesiu	
			ng/l				iq/l			000	mg/l	Solida			ma/l	
	Lahí	 Detection	0)1 ma/l	Lah	Detection	0	1 ma/l		1.0	ab D. L. 0	05			niga	
	556	934	935	939	556	934	935	939		934	935	939		934	935	939
		BEFORE	AFTER	OUTFLO		BEFORE	AFTER			BEFORE	AFTER			BEFORE	AFTER	
	RAIN	CDS	CDS	w	RAIN	CDS	CDS	OUTFLOW		CDS	CDS	OUTFLOW		CDS	CDS	OUTFLOW
storms																
Sample	30	32	32	30	30	32	32	29		30	30	28		31	31	29
Mean	0.007	0.029	0.023	0.029	0.011	0.100	0.098	0.133		14.47	13.45	17.39		3.15	3.01	2.92
Median	0.005	0.024	0.019	0.025	0.008	0.087	0.081	0.118		12.20	11.85	15.95		2.66	2.62	2.53
St. Dev.	0.006	0.022	0.018	0.022	0.009	0.048	0.048	0.054		10.25	8.70	6.93		1.93	1.71	1.75
Max	0.033	0.088	0.063	0.086	0.041	0.235	0.205	0.273		50.10	49.40	33.20		9.65	9.51	6.72
Min	0.005	0.005	0.005	0.005	0.004	0.036	0.028	0.059		1.59	3.29	7.36		0.74	0.71	0.53
C.V.	0.827	0.770	0.775	0.765	0.758	0.478	0.491	0.402		0.71	0.65	0.40		0.61	0.57	0.60
EFF% (N	/IEAN)		20%	-25%			2%	-36%			7%	-29%			4%	3%
EFF% (N	/EDIAN)		19%	-32%			7%	-47%			3%	-35%			2%	3%
			Aluminu	m		Coj	oper			Ire	on			Zi	nc	
		ug	g/L			ug	ı∕L			ug	ı/L			ug	g/L	
				-		ab Detect				ab Detecti				ab Detect		
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFORE CDS	AFTER CDS	OUTFLO	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW
Samples	S	32	32	30	30	32	32	30	30	32	32	30	25	32	32	30
Mean		200	185	392	1.58	9.63	11.16	4.98	50	223	239	279	16	51	54	31
Median		167	162	368	1.50	9.10	8.96	4.02	40	194	222	263	10	45	43	29
St. Dev.		146	118	196	0.52	8.33	10.53	3.17	37	117	123	119	18	25	30	11
Max		682	623	939	4.27	49.90	60.10	13.90	174	593	664	605	88	120	147	67
Min		42	43	81	1.00	1.50	1.50	1.50	6	43	85	4	2	10	12	16
C.V.		0.73	0.63	0.50	0.33	0.86	0.94	0.64	0.73	0.53	0.52	0.43	1.17	0.49	0.57	0.36
EFF% (N			7%	-112%	0.00	0.00	-16%	55%	0.1.0	0.00	-7%	-17%		0.10	-5%	43%
· ·	(IEDIAN)		3%	-127%			2%	55%			-14%	-19%			5%	32%

Table E-1. Summary statistics for storm events for year one. Efficiency shown as percentage and negative number indicated increase not removal.

Southwest Florida Water Management District, Stormwater Program

Table E-2. Summary statistics for base flow for year one. Efficiency is shown as percentage.Positive percentage = removal and negative percentage = increase.

		Amm	nonia			Nitrate	+ Nitrite			Organic	Nitroger	٦		Total N	litrogen	
BASE		mg/Las	Nitrogen			mg/L as	Nitrogen			mg/L as	Nitrogen					
FLOW	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW
Sample	s	42	42	38		42	42	38		42	42	40		42	42	38
Mean		0.018	0.030	0.087		0.960	0.746	0.050		0.515	0.590	1.058		1.493	1.366	1.252
Median		0.013	0.013	0.048		1.009	0.754	0.018		0.430	0.501	0.971		1.440	1.305	1.065
St. Dev.		0.018	0.039	0.131		0.335	0.286	0.059		0.268	0.324	0.645		0.307	0.265	0.680
Max		0.074	0.197	0.728		1.940	1.320	0.255		1.219	1.786	3.955		2.250	2.050	4.700
Min		0.000	0.000	0.006		0.269	0.177	0.005		0.101	0.085	0.000		0.760	0.800	0.560
C.V.		0.995	1.268	1.503		0.349	0.384	1.167		0.520	0.549	0.610		0.206	0.194	0.543
F% (MEA	N)		-70%	-187%			22%	93%			-15%	-79%			8%	8%
% (MED	AN)		0%	-280%			25%	98%			-17%	-94%			9%	18%
		Ortho-Ph	osphoru	is		Total Ph	osphoru	s			TSS			Α	Aagnesi	um
		m	g/l			m	ig/l				ug/L				mg/l	
	Lab I	Detection	-	1 ma/l	Lab	Detection	-	1 ma/l		La	ab D. L. O	.05			Ŭ	
	556	934	935	939	556	934	935	939		934	935	939		934	935	939
		BEFORE	AFTER	OUTFLO		BEFORE	AFTER			BEFOR	AFTER	OUTFL		BEFORE	AFTER	
	RAIN	CDS	CDS	w	RAIN	CDS	CDS	OUTFLOW		E CDS	CDS	ow		CDS	CDS	OUTFLOW
Sample	s	42	42	38		42	42	37		42	41	38		42	42	39
Mean		0.022	0.016	0.028		0.061	0.064	0.133		4.6	5.9	15.7		6.07	6.07	3.59
Median		0.018	0.013	0.024		0.051	0.059	0.118		2.6	3.9	13.3		6.07	6.06	2.67
St. Dev.		0.018	0.012	0.026		0.039	0.036	0.064		4.6	4.8	7.6		1.90	2.06	2.39
Max		0.091	0.046	0.116		0.169	0.185	0.305		21.5	23.8	29.9		9.89	10.20	10.70
Min		0.002	0.002	0.005		0.003	0.014	0.043		0.6	1.1	1.6		2.82	2.24	1.23
C.V.		0.838	0.752	0.933		0.643	0.560	0.478		1.0	0.8	0.5		0.31	0.34	0.67
F% (MEA	AN)		27%	-72%			-5%	-107%			-27%	-168%			0%	41%
% (MED	AN)		26%	-85%			-17%	-100%			-46%	-245%			0%	56%
		1	Aluminu	m		Co	pper			lr	on			z	inc	
						ug	j/L			ug	J/L			ц	g/L	
					L	ab Detect	ion Limit	3.0	L	ab Detecti	on Limit 🗄	50.0	L	ab Detec	tion Limit	t 30
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFOR	AFTER	OUTFL		BEFOR	AFTER	OUTFLO		BEFOR	AFTER	OUTFL		BEFOR	AFTER	OUTFLO
		E CDS	CDS	ow	RAIN	E CDS	CDS	W	RAIN	E CDS	CDS	ow	RAIN	ECDS	CDS	W
Sample	s	42	42	38		42	42	38		42	42	38	2	42	41	38
Mean		49.9	62.2	347.4		12.4	11.5	6.0		132.4	160.6	278.3	4.2	21.0	23.3	24.4
Median		37.5	43.8	329.5		7.0	7.2	4.7		122.0	138.5	254.5	4.2	18.0	19.2	20.0
St. Dev.		42.1	45.0	200.5		20.2	12.8	7.5		65.3	83.0	119.5	0.2	12.8	16.7	16.8
Max		205.0	222.0	890.0		116.0	61.2	38.1		413.0	412.0	616.0	4.4	50.0	67.6	100.0
Min		10.0	10.0	37.0		1.5	1.5	0.8		30.0	39.7	65.3	4.1	5.9	5.6	3.3
C.V.		0.8	0.7	0.6		1.6	1.1	1.2		0.5	0.5	0.4	0.0	0.6	0.7	0.7
			-25%	-459%			7%	48%			-21%	-73%			-11%	-4%
			-17%	-652%			-3%	35%			-14%	-84%			-7%	-4%

STORM E	VENT	'S FOF	R YEAR	ONE (20	02-03)		CDS UN	IIT CLEA	NED OU	T (6/25/02	2, 4/16/0	3, 7/15/03	3)					
Date				Amn	nonia			Nitrate	+ Nitrite			Organic	Nitrogen			Total Ni	trogen	
sample	event	event		mg/L as	Nitrogen			mg/L as	Nitrogen			mg/L as	Nitrogen					
collected	base	#																
			556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
			RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W
40 100 10000				0.035	0.038	0.060		0.039	0.034	0.607		1.00	1.10	0.57		4.00	4.00	4.04
10/30/2002	E	1 2	na 0.173	0.035	0.038	0.060	na 0 147	0.039	0.034	0.607	na -0.04	1.26 0.38	1.13 0.26	0.57	na 0.28	1.33	1.20	1.24 0.90
11/16/2002	E	23	0.066	0.000	0.140	0.078	0.147	0.379	0.300	0.097	-0.04	0.30	0.20	0.49	0.20	0.61	0.97	0.90
02/16/2003	E	4	0.000	0.005	0.012	0.006	0.037	0.579	0.410	0.005	0.06	0.20	0.45	1.12	0.18	0.01	0.87	1.13
02/10/2003	E	5	0.039	0.006	0.000	0.006	0.072	0.549	0.303	0.005	0.00	0.59	0.44	0.93	0.19	1.20	1.12	1.13
03/03/2003	E**	6	0.131	0.006	0.006	0.000	0.120	0.775	0.445	0.120	0.13	0.35	0.38	0.93	0.39	1.13	1.12	0.95
03/17/2003	E	7	0.175	0.061	0.000	0.006	0.210	0.615	0.431	0.031	0.09	0.33	0.96	1.28	0.52	1.15	1.43	1.32
03/21/2003	E	8	0.090	0.030	0.044	0.000 na	0.056	0.013	0.065	na	0.24	0.49	0.56	na	0.32	0.59	0.66	na
03/24/2003	E	9	0.626	0.200	0.028	0.083	0.000	0.309	0.263	0.059	0.13	0.49	0.63	0.56	1.04	1.05	1.04	0.70
03/27/2003	E	10	0.020	0.200	0.140	0.000	0.133	0.261	0.203	0.033	0.22	0.76	1.28	1.28	0.51	1.03	1.67	1.36
03/28/2003	E	10	0.201	0.012	0.006	0.065	0.135	1.010	0.819	0.200	0.07	0.17	0.31	0.70	0.42	1.19	1.13	0.96
04/25/2003	Ē	12	0.655	0.174	0.013	0.093	0.289	0.357	0.416	0.293	0.16	0.68	1.30	1.37	1.10	1.10	1.73	1.76
05/01/2003	Ē	13	na	0.029	0.063	0.006	na	0.490	0.409	0.005	na	0.90	0.97	1.26	na	1.42	1.44	1.27
05/18/2003	Ē	15	0.651	0.094	0.024	na	0.742	0.568	0.381	na	0.35	-0.43	1.50	na	1.74	0.24	1.90	na
05/22/2003	Ē	16	0.284	0.014	0.016	0.064	0.181	0.261	0.239	0.096	0.01	0.57	0.64	1.21	0.48	0.85	0.90	1.37
06/05/2003	Ē	17	0.311	0.016	0.018	0.881	0.212	0.297	0.288	0.032	0.12	0.86	1.17	3.84	0.64	1.17	1.48	4.75
06/09/2003	Ē	18	0.131	0.020	0.019	0.452	0.155	0.132	0.165	0.041	0.01	0.60	0.75	2.91	0.30	0.75	0.93	3.40
06/11/2003	E	19	0.385	0.130	0.067	0.276	0.537	0.402	0.295	0.369	0.11	1.07	1.17	0.91	1.03	1.60	1.53	1.55
06/22/2003	E	20	0.047	0.006	0.006	0.082	0.066	0.291	0.203	0.084	0.01	0.57	0.53	0.31	0.12	0.87	0.74	0.48
06/29/2003	Е	21	0.080	0.006	0.006	0.013	0.088	0.479	0.460	0.054	0.09	0.55	0.60	1.31	0.26	1.03	1.07	1.38
07/11/2003	Е	22	0.153	0.006	0.006	0.006	0.531	0.487	0.375	0.117	-0.01	0.63	0.69	0.92	0.68	1.12	1.07	1.04
08/07/2003	Е	23	0.086	0.006	0.007	0.063	0.170	0.271	0.230	0.109	0.05	0.51	0.60	0.54	0.31	0.79	0.84	0.71
08/19/2003	Е	24	0.077	0.005	0.007	0.051	0.361	0.512	0.241	0.245	-0.40	0.46	0.56	0.37	0.04	0.98	0.81	0.67
08/25/2003	Е	25	0.112	0.022	0.011	0.012	0.390	0.793	0.659	0.218	0.03	0.35	0.44	0.53	0.53	1.16	1.11	0.76
08/26/2003	Е	26	0.158	0.003	0.003	0.021	0.302	0.833	0.633	0.228	0.00	0.45	0.39	0.49	0.46	1.29	1.03	0.74
09/03/2003	E	27	0.053	0.006	0.003	0.010	0.146	0.450	0.462	0.129	0.03	0.54	0.54	0.85	0.23	0.99	1.00	0.99
09/19/2003	E	28	0.281	0.006	0.007	0.026	0.481	0.743	0.580	0.297	0.08	0.60	0.49	0.89	0.84	1.35	1.08	1.21
09/25/2003	E	29	0.032	0.011	0.011	0.050	0.121	0.424	0.303	0.109	0.05	0.51	0.52	1.17	0.199	0.949	0.835	1.33
09/30/2003	E	30	0.139	0.037	0.063	0.025	0.189	0.596	0.761	0.052	0.03	0.46	0.43	1.07	0.36	1.09	1.25	1.15
10/14/2003	E	31	0.516	0.016	0.018	0.011	0.251	0.424	0.312	0.005	0.10	0.85	1.13	1.44	0.869	1.29	1.46	1.46
10/25/2003	E	32	0.251	0.017	0.020	0.013	0.222	0.432	0.226	0.008	0.12	0.91	1.15	1.47	0.59	1.36	1.4	1.49
10/28/2003	E	33	0.059	0.018	0.015	0.015	0.056	0.007	0.006	0.007	0.06	0.69	0.58	1.46	0.173	0.711	0.6	1.485
# Samples			30	32	32	30	30	32	32	30	30	32	32	30	30	32	32	30
Mean			0.213	0.040	0.032	0.085	0.226	0.450	0.379	0.133	0.07	0.57	0.73	1.10	0.51	1.06	1.14	1.31
Median			0.156	0.017	0.016	0.026	0.179	0.441	0.378	0.097	0.07	0.56	0.60	0.93	0.44	1.11	1.08	1.18
St. Dev.			0.182	0.057	0.043	0.176	0.166	0.232	0.204	0.140	0.12	0.30	0.34	0.72	0.37	0.29	0.32	0.83
Max			0.655	0.205	0.160	0.881	0.742	1.010	0.819	0.607	0.35	1.26	1.50	3.84	1.74	1.60	1.90	4.75
Min			0.032	0.003	0.003	0.006	0.056	0.007	0.006	0.005	-0.40	-0.43	0.26	0.31	0.04	0.24	0.60	0.48
C.V.			0.85	1.41	1.35	2.05	0.74	0.52	0.54	1.05	1.74	0.52	0.46	0.66	0.72	0.27	0.28	0.63

Table E-3. Nitrogen concentrations for storm events for year one

	base	event			nonia				+ Nitrite				Nitrogen			Total Ni		
				mg/Las	Nitrogen								_					
collected																		
	flow	#																
			556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
			RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W
10/30/2002	в	1		0.014	0.078	0.170		1.555	0.186	0.021		0.51	1.79	1.24		2.08	2.05	1.43
11/04/2002	в	2		0.021	0.012	na 0.170		1.252	0.925	na 0.021		0.35	0.36	na		1.62	1.3	na
11/12/2002	в	3		0.005	0.012	0.064		1.206	1.204	0.009		0.18	0.30	0.49		1.39	1.41	0.56
11/15/2002	в	4		0.017	0.047	0.059		0.922	0.878	0.102		0.10	0.09	0.59		1.04	1.01	0.75
11/21/2002	в	5		0.000	0.000	na		0.945	0.950	na		0.24	0.14	na		1.18	1.09	na
02/04/2003	в	6		0.023	0.037	0.006		0.929	0.970	0.005		0.33	0.30	0.96		1.28	1.31	0.973
02/06/2003	B**	7		0.006	0.006	0.006		1.160	0.988	0.062		0.24	0.28	1.10		1.41	1.27	1.17
02/12/2003	в	8		0.006	0.006	0.022		1.050	0.814	0.098		0.39	0.48	0.91		1.45	1.3	1.03
02/16/2003	в	9		0.006	0.006	na		0.770	0.714	na		1.10	0.89	na		1.88	1.61	na
02/21/2003	в	10		0.021	0.197	na		1.940	1.320	na		0.29	0.53	na		2.25	2.05	na
02/24/2003	в	11		0.018	0.006	0.017		0.984	0.434	0.042		0.36	0.71	0.71		1.36	1.15	0.766
02/26/2003	в	12		0.014	0.056	0.047		1.218	0.501	0.115		0.30	0.56	0.59		1.53	1.13	0.751
03/13/2003	в	13		0.023	0.122	0.021		1.056	1.223	0.005		0.41	0.60	1.31		1.49	1.94	1.34
03/21/2003	в	14		0.032	0.032	0.170		0.733	0.561	0.022		0.65	0.61	1.04		1.41	1.2	1.23
03/27/2003	в	15		0.023	0.006	0.271		0.850	0.699	0.122		0.55	0.59	0.58		1.42	1.29	0.974
03/31/2003		16		0.006	0.006	0.012		1.070	0.706	0.058		0.72	0.80	0.96		1.8	1.51	1.03
04/03/2003	в	17		0.044	0.015	0.006		1.040	0.699	0.006		0.40	0.47	0.98		1.48	1.18	0.991
04/07/2003	в	18		0.006	0.029	0.026		1.290	1.090	0.005		0.48	0.47	1.57		1.78	1.59	1.60
04/16/2003	в	19		0.006	0.006	0.006		1.190	0.887	0.005		0.29	0.46	1.38		1.49	1.35	1.39
04/18/2003	в	20		0.013	0.060	0.006		1.020	0.699	0.005		0.36	0.32	1.44		1.39	1.08	1.45
04/21/2003	в	21		0.006	0.051	0.006		1.280	1.100	0.005		0.34	0.35	1.61		1.63	1.5	1.62
04/24/2003	в	22		0.006	0.006	0.006		1.050	1.070	0.005		0.31	0.40	1.37		1.37	1.48	1.38
04/28/2003	в	23		0.067	0.041	0.218		0.427	0.353	0.255		0.94	0.86	0.63		1.43	1.25	1.1
05/12/2003	в	24		0.006	0.018	0.100		0.423	0.575	0.005		0.46	0.62	1.84		0.89	1.21	1.94
05/16/2003	в	25		0.059	0.073	0.028		0.498	0.547	0.101		1.07	1.22	1.81		1.63	1.84	1.94
05/22/2003	В	26		0.074	0.069	0.104		0.269	0.243	0.005		0.82	0.94	1.51		1.16	1.25	1.62
06/02/2003	B	27		0.022	0.035	0.728		1.140	0.373	0.017		1.00	1.02	3.96		2.16	1.43	4.7
06/11/2003	В	28 29		0.018	0.013	0.330		0.286	0.297	0.085		0.46	0.49	1.30		1.41	0.8	
07/07/2003	B	30		0.035	0.093	0.067		0.281	0.177	0.017		1.09 0.43	0.51	1.52		1.41	1.82	1.6
07/15/2003	В	30		0.014	0.000	0.057		0.795	0.802	0.175		0.43	0.62	0.48		1.49	1.12	0.708
07/18/2003	В	32		0.006	0.012	0.026		0.732	0.492	0.112		0.49	0.02	0.48		1.33	1.12	0.987
07/23/2003	в	33		0.006	0.006	0.020		0.838	0.669	0.016		0.48	0.44	0.92		1.32	1.12	1.02
07/30/2003	в	34		0.010	0.014	0.129		0.803	0.518	0.016		0.52	0.75	1.26		1.33	1.28	1.4
08/13/2003	в	35		0.008	0.011	0.139		0.998	0.796	0.130		0.60	0.75	0.61		1.61	1.56	0.875
08/29/2003	в	36		0.057	0.017	0.020		1.370	1.100	0.008		0.41	0.42	0.82		1.84	1.54	0.85
09/05/2003	в	37		0.006	0.003	0.069		1.025	0.865	0.071		0.55	0.48	0.53		1.58	1.35	0.667
09/10/2003	в	38		0.005	0.010	0.013		1.150	0.858	0.005		0.43	0.63	1.01		1.58	1.5	1.03
09/17/2003	в	39		0.011	0.010	0.048		1.160	0.957	0.037		0.37	0.39	0.75		1.54	1.36	0.834
09/19/2003	в	40		0.003	0.003	0.081		0.878	0.729	0.014		0.42	0.67	0.73		1.3	1.4	0.828
10/03/2003	в	41		0.012	0.008	0.044		0.855	0.778	0.125		0.43	0.44	0.54		1.3	1.23	0.707
10/06/2003	в	42		0.007	0.009	0.027		0.824	0.912	0.011		1.22	0.37	1.45		2.05	1.29	1.49
# Samples				42	42	38		42	42	38		42	42	38		42	42	38
Mean				0.018	0.030	0.087		0.960	0.746	0.050		0.515	0.590	1.114		1.493	1.366	1.252
Median				0.013	0.013	0.048		1.009	0.754	0.018		0.430	0.501	0.996		1.440	1.305	1.065
St. Dev.				0.018	0.039	0.131		0.335	0.286	0.059		0.268	0.324	0.613		0.307	0.265	0.680
Max				0.074	0.197	0.728		1.940	1.320	0.255		1.219	1.786	3.955		2.250	2.050	4.700
Min				0.000	0.000	0.006		0.269	0.177	0.005		0.101	0.085	0.476		0.760	0.800	0.560
C.V.				1.00	1.27	1.50		0.35	0.38	1.17		0.52	0.55	0.55		0.21	0.19	0.54

Table E-4. Nitrogen concentrations for base flow samples for year one.

Date				Ortho-Ph	osphorus	8		Total Ph	osphorus			TSS			CALCIUM	Λ	N	AGNESI	IM
sample	storm	event			G/L	-			G/L			uq/L			mg/l		N	mg/l	
	event	#		Lab Detecti		01		Lab Detecti		01		Lab D. L. (1.05		підл			тığл	
conecteu	eveni		556	934	935	939	556	934	935	939	934	935	939	934	935	939	934	935	939
				BEFORE	AFTER			BEFORE		OUTFLO	BEFOR	AFTER		BEFORE	AFTER		BEFORE	AFTER	
			RAIN	CDS	CDS	OUTFLOW	RAIN	CDS	CDS	W	E CDS	CDS	OUTFLOW	CDS	CDS	OUTFLOW	CDS	CDS	OUTFLOW
10/30/2002	E	1	na	0.051	0.026	0.086	na	0.154	0.140	0.196	32.9	30.5	15.5	19.9	28.3	39.8	0.79	1.60	2.98
11/12/2002	E	2	0.005	0.070	0.056	0.047	0.005	0.195	0.162	0.179	26.9	16.0	16.3	66.0	66.8	51.7	9.65	9.51	4.29
11/16/2002	E	3	0.005	0.007	0.007	0.071	0.004	0.036	0.028	na	na	na	na	na	na	na	na	na	na
02/16/2003	E	4	0.005	0.005	0.010	0.013	0.025	0.052	0.056	0.101	6.3	8.6	13.5	47.0	44.6	50.8	4.03	3.82	6.65
02/22/2003	Е	5	0.005	0.005	0.015	0.011	0.005	0.094	0.077	0.131	14.3	16.8	13.5	46.1	39.0	25.7	3.05	2.78	2.30
03/03/2003	E	6	0.005	0.010	0.013	0.042	0.005	0.039	0.046	0.145	11.7	11.8	11.1	61.7	60.6	44.1	5.14	5.22	4.01
03/17/2003	Е	7	0.005	0.021	0.015	0.060	0.011	0.133	0.176	0.197	16.9	19.3	19.5	56.9	53.2	48.9	5.61	5.57	5.25
03/21/2003	Е	8	0.005	0.038	0.033	na	0.005	0.117	0.114	na	15.5	15.7	na	12.8	12.1	na	0.74	0.71	na
03/24/2003	Е	9	0.005	0.032	0.024	0.055	0.005	0.076	0.056	0.133	10.5	7.6	7.4	20.1	20.3	11.8	1.14	1.21	0.95
03/27/2003	Е	10	0.005	0.081	0.063	0.048	0.014	0.190	0.169	0.186	34.4	49.4	26.6	18.4	22.0	29.7	0.76	1.25	2.22
03/28/2003	E	11	0.005	0.035	0.029	0.018	0.005	0.114	0.089	0.104	14.1	14.0	9.3	37.9	38.7	17.0	2.11	2.21	1.08
04/25/2003	Е	12	0.019	0.029	0.005	0.045	0.017	0.124	0.181	0.263	10.1	12.8	33.2	21.6	32.4	26.3	2.18	2.32	2.97
05/01/2003	E	13	na	0.052	0.055	0.025	na	0.125	0.142	0.157	12.7	15.5	16.4	33.9	34.5	25.7	3.12	3.21	2.01
05/18/2003	E	14	0.033	0.054	0.021	na	0.041	0.235	0.205	na	50.1	18.3	na	34.4	36.8	na	2.60	2.98	na
05/22/2003	E	15	0.005	0.027	0.017	0.005	0.011	0.070	0.075	0.156	6.2	9.4	15.1	26.2	25.8	22.7	2.66	2.36	1.73
06/05/2003	E	16	0.005	0.013	0.019	0.010	0.014	0.082	0.124	0.177	14.3	15.4	20.0	42.6	38.2	37.9	4.99	3.12	4.24
06/09/2003	E	17	0.005	0.019	0.040	0.005	0.005	0.073	0.130	0.273	8.3	9.0	11.6	36.1	38.7	34.6	4.92	3.18	3.42
06/11/2003	E	18	0.005	0.005	0.005	0.041	0.025	0.102	0.095	0.098	na	na	na	29.4	28.1	16.4	2.15	2.62	1.21
06/22/2003	E	19	0.005	0.022	0.000	0.037	0.005	0.090	0.054	0.059	9.3	97	31.0	22.4	20.8	11.2	1.01	0.87	0.53
06/29/2003	E	20	0.005	0.022	0.019	0.001	0.005	0.067	0.082	0.143	1.6	3.3	20.5	35.8	36.6	32.2	2.86	2.83	2.53
07/11/2003	E	21	0.005	0.020	0.005	0.021	0.005	0.083	0.079	0.140	4.9	7.4	7.5	35.8	29.1	26.1	2.83	2.57	1.94
08/07/2003	E	22	0.005	0.015	0.003	0.025	0.005	0.060	0.053	0.076	6.6	10.9	11.1	31.4	31.5	18.9	1.77	1.77	1.10
08/19/2003	E	23	0.005	0.005	0.010	0.020	0.005	0.069	0.060	0.070	8.6	11.9	8.3	37.8	36.6	18.4	1.96	1.99	1.13
08/25/2003	E	24	0.005	0.000	0.005	0.005	0.000	0.055	0.059	0.002	13.9	6.4	12.9	41.2	40.5	25.2	2.37	2.50	1.13
08/26/2003	E	25	0.000	0.024	0.005	0.005	0.010	0.033	0.033	0.068	5.4	6.7	13.9	45.2	44.4	18.1	3.26	3.48	1.12
09/03/2003	E	26	0.005	0.020	0.000	0.020	0.013	0.103	0.045	0.000	15.4	16.6	20.6	29.5	31.0	22.5	2.03	2.16	1.12
09/19/2003	E	27	0.010	0.045	0.005	0.040	0.019	0.057	0.045	0.095	6.3	4.3	15.6	49.5	47.6	32.8	5.02	4.71	3.01
09/25/2003	E	28	0.005	0.015	0.000	0.005	0.005	0.073	0.069	0.073	9.7	8.0	21.1	30.5	28.7	37.6	1.83	1.84	3.59
09/30/2003	E	29	0.005	0.023	0.020	0.000	0.005	0.073	0.062	0.075	22.4	11.6	21.1	43.5	44.9	31.9	4.39	3.59	3.02
10/14/2003	E	30	0.005	0.023	0.062	0.010	0.005	0.072	0.002	0.118	17.8	12.3	22.9	45.9	48.4	45.8	4.33	4.07	5.51
10/25/2003	E	31	0.000	0.005	0.002	0.005	0.010	0.100	0.130	0.112	9.7	7.9	24.3	52.0	48.4	50.0	6.11	4.80	6.72
10/28/2003	E	32	0.005	0.000	0.003	0.005	0.022	0.120	0.132	0.112	17.6	16.1	20.3	26.9	28.0	43.4	2.23	2.40	5.62
10/28/2003	E	32	0.005	0.059	0.040	0.005	0.012	0.120	0.110	0.115	17.0	10.1	20.5	20.9	20.0	43.4	2.23	2.40	5.02
# Samples			30	32	32	30	30	32	32	29	30	30	28	31	31	29	31	31	29
Mean			0.007	0.029	0.023	0.029	0.011	0.100	0.098	0.133	14.5	13.4	17.4	36.7	36.7	30.9	3.1	3.0	2.9
Median			0.005	0.020	0.019	0.025	0.008	0.087	0.081	0.100	12.2	11.9	15.9	35.8	36.6	29.7	2.7	2.6	2.5
St. Dev.			0.006	0.024	0.018	0.020	0.009	0.048	0.048	0.054	10.3	8.7	6.9	13.0	11.9	12.2	1.9	1.7	1.7
Max			0.033	0.022	0.063	0.086	0.041	0.235	0.205	0.273	50.1	49.4	33.2	66.0	66.8	51.7	9.7	9.5	6.7
Min			0.005	0.005	0.005	0.005	0.004	0.036	0.028	0.059	1.6	3.3	7.4	12.8	12.1	11.2	0.7	0.7	0.5
C.V.			0.83	0.000	0.000	0.76	0.76	0.48	0.49	0.000	0.71	0.65	0.40	0.35	0.32	0.39	0.61	0.57	0.60
0.4.			0.00	0.77	0.77	0.70	0.70	0.70	0.75	0.70	0.71	0.00	0.70	0.55	0.02	0.00	0.01	0.07	0.00

Table E-5. Water quality concentrations for storm events for year one

Date				Aluminum	ו ו		Сор	per			Irc	n			Zir	nc	
sample	event						ug				ug	/L			ug,	Ľ	
collected							Lab Detecti	on Limit 3.	0		Lab Detectio	on Limit 50	.0	l	ab Detecti)
			934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
			BEFORE	AFTER	OUTFLO	RAIN	BEFORE	AFTER	OUTFLO	RAIN	BEFORE		OUTFLO	RAIN	BEFOR	AFTER	OUTFL
			CDS	CDS	W	10 11	CDS	CDS	W	10 11	CDS	CDS	W	10 414	E CDS	CDS	ow
40/20/2000	_		659	411	81		13.70	17.10	2.50		550	460	240		120.0	100.0	20.0
10/30/2002	E	1	371	189	408	na 1.50	9.80	8.10	4.00	na 70.0	400	220	320	na	90.0	70.0	60.0
11/12/2002	E	∠ 3	94	84	128	1.00	3.90	4.00	2.10	10.0	90	100	140	na	40.0	40.0	30.0
11/16/2002 02/16/2003	E	3	94 64	- 04 77	120	1.50				28.2	132	163	140	na 14.0	40.0	40.0 53.2	30.0
	E	4	230	209	385	1.50	8.33	9.19	13.90 8.53		302	387	314	14.0			42.6
02/22/2003	E**	6	71	209	170	1.50	10.60 4.24	7.31 9.13	6.78	37.3 70.4	164	229	243	88.1	112.0 35.2	57.7 41.5	42.6 25.0
	_	6 7	104	208		1.50							243		35.2		25.0 32.1
03/17/2003 03/21/2003	E		343	208	401		10.80	9.91	9.30	41.7 37.1	169 256	359 261		16.9	60.1	60.7	
	E	~			na	1.50	3.89	3.89	na 4.50				na	7.2		55.5	na
03/24/2003	E	8	139	140	225	1.50	9.08	7.72	1.50	30.9	129	129	155	12.8	40.9	31.6	33.4
03/27/2003	E	9 10	682 229	623 169	603 297	1.50 1.50	9.58	18.80	8.21	55.7	593	664 237	419 224	26.8	86.1	99.5 29.5	27.1 32.0
03/28/2003	E	10		169 154	939	1.50	9.27 6.18	11.10 16.20	4.61	63.1	271	323		7.4 19.3	34.1 50.0	29.5	
04/25/2003 05/01/2003	E	12	196	221					13.00	78.1	204 196		605				66.7 37.0
	E		168		258	na	10.60	12.30	3.90	na		266	241	na	67.3	118.0	
05/18/2003	E	15 16	253	181	na	4.27	13.20	17.30	na 7.40	122.0	286 168	223	na	44.7	74.9	62.0	na
05/22/2003	E		92	96	215	1.50	18.60	16.80	7.43	89.7		136	198	10.5	48.0	43.7	33.3
06/05/2003	E	17	128	186	273	1.50	11.50	11.70	4.82	42.2	42.6	305	410	13.9	60.2	147.0	25.8
06/09/2003	E	18	188	361	299	1.50	9.12	25.50	3.93	63.7	257	406	325	na	39.2	93.6	30.2
06/11/2003	E	19	290	148 253	641	1.50 1.50	11.00	9.75	5.88	73.9	311	160	382	33.2	65.8	45.1	40.9
06/22/2003	E	20	237		310		7.05	9.47	6.25	18.2	145	184	175	4.2	37.8	38.6	33.7
06/29/2003	E	21	185	198	713	1.50 1.50	9.66	8.78	6.10	174.0	155	183	459	na	10.4	11.6	23.8
07/11/2003	E	22	206	291	491		7.96	7.10	1.50	89.2 20.4	224 189	249 179	346	na 64	27.3	28.8	20.1
08/07/2003	E	23	154	155	370	1.50 1.50	6.29	6.33	3.41				225		35.2	41.0	25.2
08/19/2003	E	24	165	196	194		4.99	6.75	3.06	53.6	191	223	160	8.6	36.7	33.1	16.2
08/25/2003	E	25 26	140 93	112 91	359	1.50	1.50	3.13	1.50	71.1 20.4	181 139	155	206	6.1 4.0	26.1 16.4	26.7	24.0
08/26/2003	E	26 27			365	1.50	3.33	1.50	1.50			125	193		35.3	21.2	19.3
09/03/2003	E	27	208	106	619	1.50	3.34	1.50	1.50	20.8	218 98.5	143 85	334 164	5.6 3.6		27.5	27.6
09/19/2003	E		42	43	232	1.50	4.68	5.11	3.45	28.2					22.3	26.1	24.3
09/25/2003 09/30/2003	E	29 30	120 159	108 80	550 551	1.50 1.50	3.72 6.65	4.58 3.34	4.04 4.16	6.3 15.3	154 277	124 147	3.9 366	2.0 2.9	44.5 50.2	39.7 37.1	28.6 25.9
	E	30		206			49.90	<u> </u>		21.2		390	366	2.9	60.6		
10/14/2003	E	31	142 68	206	535 503	1.50 1.50	49.90	15.70	3.33 5.14	21.2	222 153	239	335	10.1	62.9	77.9 72.1	19.9 30.2
10/28/2003	E	32 33	178	129	495	1.50	9.30	7.86	5.14 3.97	18.0	266	239	405	5.7	70.3	52.9	29.2
10/28/2003	E	33	170	129	495	1.50	9.50	1.00	5.97	10.0	200	105	405	5.7	70.5	52.9	29.2
# Samples			32	32	30	30	32	32	30	30	32	32	30	25	32	32	30
Mean			200	185	392	1.58	9.63	11.16	4.98	50	223	239	279	15.5	51.4	53.8	30.7
Median			167	162	368	1.50	9.10	8.96	4.02	40	194	222	263	10.1	45.1	42.6	28.9
St. Dev.			146	118	196	0.52	8.33	10.53	3.17	37	117	123	119	18.2	25.4	30.4	10.9
Max			682	623	939	4.27	49.90	60.10	13.90	174	593	664	605	88.1	120.0	147.0	66.7
Min			42	43	81	1.00	1.50	1.50	1.50	6	43	85	4	2.0	10.4	11.6	16.2
C.V.			0.73	0.63	0.50	0.33	0.86	0.94	0.64	0.73	0.53	0.52	0.43	1.17	0.49	0.57	0.36

Table E-6. Water quality concentrations for metals for storm events for year one.

DISSOLVED	MEAT	ALS YEA	RC	DNE																					
Date		D	Diss	olved Z	inc			Dis	sol	ved Co	ppe	er		Dis	ŝS	olved Ir	on			Di	ssc	olved Le	ad		
sample	event			ug/L						ug/L						ug/L						ug/L			
collected	base	Lab	Dete	ection L	imit	15		Lab [Dete	ection Li	mit	3.0		Lab Det	te	ction Lir	nit	50.0		Lab D	ete	ction Lir	nit :	2.0	
STORM F	LOW	934	D	935	D	939	D	934	D	935	D	939		934 D		935	D	939	D	934	D	935	D	939	D
YEAR ONE		BEFORE CDS	Q	AFTER CDS	Q	OUTFL OW	Q	BEFORE CDS	Q	AFTER CDS	Q	OUTFLO W	DQ	BEFORE C		AFTER CDS	Q	OUTFLO W	Q	BEFORE CDS	Q	AFTER CDS	Q	OUTFL OW	Q
11/13/2002	E	80.0		60.0		40.0	Ι	8.9	1	7.3	1	3.8	Ι	210.0		120.0		160.0		5.8		3.2		2.6	
11/18/2002	E	30.0	I	30.0	T	10.0	U	3.2	T	3.5	I	1.6	U	60.0 I	I	80.0	Т	120.0		1.7	\square	1.9		0.25	U
2/19/2003	E	19.7	J	22.9	J	4.9	IJ	3.6	I	4.9	1	7.3	1	60.1		65.7		52.6		5	U	5	U	5	U
2/23/2003	E	17.6	J	21.6	J	13.3		1.5	U	1.5	U	1.5	U	67.5		141.0		53.3		5	U	5	U	5	U
3/17/2003	E	17.6	J	20.2	J	5.8	IJ	6.0	I	5.2	1	1.5	U	70.4		69.7		41.2	1	5	U	5	U	5	U
3/21/2003	E	10.3		9.7		N/A		1.5	U	1.5	U	N/A		21.5 I	I	21.1	Т	N/A		5	U	5	U	N/A	
3/24/2003	E	13.7		13.9		12.0		3.6	I	3.6	1	1.5	U	37.9 I	I	37.7	Т	44.1	1	5	U	5	U	5	U
3/27/2003	E	13.2		12.1		4.3	Т	1.5	U	1.5	U	1.5	U	27.3 I	I	33.3	Τ	48.8	1	5	U	5	U	5	U
3/28/2003	E	9.5		8.7		13.2		5.9	I	5.2	Ι	1.5	U	90.8		87.1		38.7	1	5	U	5	U	5	U
4/26/2003	E	23.8		21.5		18.9		1.5	U	10.1	1	1.5	1	32.8 I	I	196.0		44.8		5	U	5	U	5	U
5/1/2003	E	27.9		43.6		3.0	Т	7.6	1	8.0	1	1.5	U	41.9 I	I	44.2	Τ	76.5		5	U	5	U	5	U
5/19/2003	E	30.0	J	22.2	J	77.2	J	7.9	I	8.8	1	1.5	U	51.3		57.4		47.0	1	5	U	5	U	5	U
5/23/2003	E	28.5		24.1		11.5		12.8		10.4	1	3.1	1	36.2 I	I	43.9	Τ	37.5	1	5	U	5	U	5	U
6/6/2003	E	40.2		49.7		9.2		5.7	1	4.7	1	1.5	U	56.2		76.2		48.8		5	U	5	U	5	U
6/9/2003	E	24.3		46.1		10.4		4.2	1	3.7	1	1.5	U	34.9 I	I	68.3		82.2		5	U	5	U	5	U
6/13/2003	E	23.5		21.9		15.6		3.2	T	1.5	U	1.5	U	22.9 I	I	21.4	Т	50.4		5	U	5	U	5	U
6/23/2003	E	14.2		13.8		9.2		3.9	I	3.9	T	3.4	1	34.5 I	I	29.6	Т	29.1	1	5	U	5	U	5	U
6/29/2003	E	18.9		19.6		7.3		4.8	1	5.0	1	1.5	U	31.4 I	I	33.7	Τ	30.8	1	5	U	5	U	5	U
7/12/2003	E	24.8		25.7		11.7		4.1	T	1.5	U	1.5	U	67.7		46.2		71.4		5	U	5	U	5	U
8/9/2003	E	19.6		23.8		9.4		3.8	T	4.0	I	1.5	U	87.0	Τ	80.1		43.4		5	U	5	U	5	U
8/20/2003	E	17.3		17.2		8.1		1.5	U	1.5	U	1.5	U	87.8		81.9		46.2		5	U	5	U	5	U
8/26/2003	E	15.1		17.7		12.2		1.5	U	1.5	U	1.5	U	83.9		82.3		31.6	1	5	U	5	U	5	U
8/27/2003	E	10.9		12.1		8.8		1.5	U	1.5	U	1.5	U	74.0		66.6		32.9	I	5	U	5	U	5	U
9/4/2003	E	13.9		12.8		10.4		1.5	U	1.5	U	1.5	U	50.9		45.0		37.1	1	5	U	5	U	5	U
9/21/2003	E	18.1		20.3		15.1		3.2	1	1.5	U	1.5	U	59.0		51.5		63.0		5	U	5	U	5	U
9/26/2003	E	30.1		27.1		10.5		1.5	U	1.5	U	1.5	U	57.4	Τ	42.2		93.2		5	U	5	U	5	U
10/1/2003	E	22.2		28.1		7.4		3.2	T	1.5	U	1.5	U	59.0	Τ	70.9		44.3		5	U	5	U	5	U
10/15/2003	E	42.3		47.1		5.5	Т	49.9		60.1		3.3	U	73.3		95.6		36.6	1	5	U	5	U	5	U
10/27/2003	E	44.1		55.8		11.9		11.2		10.8		1.5	U	85.8		143.0		47.9		5	U	5	U	5	U
10/29/2003	E	34.1		31.5		12.3		1.5	I	7.9	I	4.0	υ	68.6		61.4		71.4		5	U	5	U	5	U
3/3/2003	E**	13.3	J	14.8	J	7.4	IJ	1.5	UJ	1.5	IJ	1.5	IJ	91.6		94.7		64.1		5	U	5	U	5	U
# Samples		31		31		30		31		30		30		31		31		30		31		31		30	
Mean		31.2		35.5		8.9		16.4		2.4		2.4		75.7		93.1		52.9		5.0		5.0		5.0	
Median		34.1		31.5		7.4		7.9		1.5		1.5		73.3		94.7		47.9		5.0		5.0		5.0	
St. Dev.		13.2		16.2		3.0		24.8		1.2		1.2		13.1		31.6		14.4		0.0		0.0		0.0	
Max		44.1		55.8		12.3		60.1		4.0		4.0		91.6		143.0		71.4		5.0	Щ	5.0		5.0	-
Min		13.3		14.8		5.5		1.5		1.5		1.5		59.0		61.4		36.6		5.0	Ц	5.0	ļĻļ	5.0	_
C.V.		0.42		0.46		0.34		1.52		0.51		0.51		0.17		0.34		0.27		0.00		0.00		0.00	

DISSOLVED	META	LS BASE	FL	OW YE	AR	ONE																			
Date		D	Diss	olved Z	inc			Dis	sol	ved Co	ppe	r		D	liss	olved Iro	n			Di	ssc	lved Le	ead		
sample	event			ug/L						ug/L						ug/L						ug/L			
collected	base		Dete	ection L	imit	-		11	Dete	ection Li	mit			11	ete	ction Lim	it (11	ete	ction Lir	mit :		
BASE FL	ow	934	D	935	D	939	D	934	D	935	D	939		934	D		D .	939	D	934	D	935	D	939	D
YEAR ONE		BEFORE	Q	AFTER CDS	Q	OUTFL OW	Q	BEFORE	Q	AFTER	Q		DQ	BEFORE	Q	AFTER C	ב	OUTFLO W	Q	BEFORE CDS	Q	AFTER	Q	OUTFL OW	Q
11/12/2002	в	0.0	υ	10.0	υ	10.0	υ	2 CDS 3.7	T	<u>CDS</u> 5.7		0.9	υ	20.0	υ	CDS 70.0 I		100.0		0.3	υ	<u>CDS</u> 1.1		0.7	
11/15/2002	B	10.0	Ŭ	20.0	ī	10.0	Ŭ	2.6	i	4.0	i	2.1	U	40.0	0	50.0 I	:	100.0	i	0.6	-	0.9	i i	1.1	i
11/21/2002	B	6.0	U	6.0	ΰ	N/A	0	4.6	i	4.6	i	N/A	0	40.0		30.0 L	i i	N/A	·	0.0	υ	0.2	U	N/A	<u> </u>
2/4/2003	В	7.7	ī	3.4	I	2.4	1	18.5	•	22.8	· ·	31.6		55.1	•		ī	29.4		0.4	υ	0.2	U	0.2	υ
2/12/2003	B	20.3	J	17.2	J	16.6	J	9.3		10.1		11.1	1	91.8		86.3	•	38.7	÷	0.5	ī	0.5	ī	0.5	ī
2/16/2003	В	18.8	J	15.0	J	N/A	Ŭ	9.0	T	9.6		N/A	· ·	78.5		86.6	+	N/A	· ·	5	υ	5	Ū	N/A	
2/21/2003	В	6.7	IJ	39.3	J	N/A		1.5	Ū	1.5	Ū	N/A		120.0		133.0	+	N/A		5	υ	5	U	N/A	
2/24/2003	В	7.7	IJ	11.5	J	11.4	J	4.8	Ĭ	4.9	ī	1.5	υ	128.0		146.0	+	54.9	-	5	υ	5	Ŭ	5	υ
2/26/2003	В	4.8	IJ	6.4	IJ	7.3	IJ	4.3	i	1.5	Ū	1.5	Ŭ	129.0		239.0	+	68.6		5	U	5	Ŭ	5	Ŭ
3/13/2003	B	6.1	1	5.7	IJ	3.1	IJ	1.5	Ū	1.5	U	1.5	U	89.0		272.0	+	27.0		5	U	5	Ŭ	5	Ŭ
3/21/2003	В	19.8	t t	22.3		16.4		6.0	Ĭ	4.7	ī	1.5	U	98.7	\square	85.2	+	95.9	÷	5	U	5	Ŭ	5	Ŭ
3/27/2003	B	4.9		5.4		9.4		10.7	i	9.1	i	1.5	Ŭ	92.2		88.1	-	65.6		5	U	5	Ŭ	5	U
3/31/2003	B	4.8	i	8.3	<u> </u>	7.5	1	6.9	i	6.7	i	1.5	Ŭ	99.4		101.0	-	68.8		5	U	5	Ŭ	5	U
4/3/2003	в	3.2		3.5		1.0	υ	1.5	υ	1.5	υ	1.5	U	80.1		64.1		43.9	1	5	Ū	5	Ū	5	Ū
4/7/2003	в	2.7		4.4		2.7	1	1.5	Ū	1.5	Ū	1.5	Ū	65.9		74.2		29.6	1	5	Ū	5	Ū	5	Ū
4/16/2003	в	2.8	1	4.0	T	3.8	Т	1.5	Ū	3.2	1	1.5	U	60.9		115.0		48.7	Т	5	U	5	U	5	U
4/18/2003	в	1.0	U	1.0	U	2.4	Т	1.5	υ	1.5	υ	1.5	υ	53.9		69.1		49.6	Т	5	υ	5	υ	5	U
4/21/2003	в	1.0	U	1.0	U	8.8		1.5	υ	1.5	U	4.0	1	43.4	T	64.2		49.7	Т	5	U	5	U	5	U
4/24/2003	в	2.5	1	2.5	1	1.0	υ	1.5	U	1.5	U	1.5	U	48.8	1	55.9		40.6	Т	5	U	5	U	5	U
4/28/2003	в	11.4		9.5		16.1		10.9	T	9.8	1	1.5	U	90.5		55.5		63.9		5	U	5	U	5	U
5/12/2003	в	3.0	1	2.7	IJ	4.0	IJ	3.8	I	1.5	U	1.5	U	34.8	1	63.9		44.7	Т	5	U	5	U	5	U
5/16/2003	в	21.2	J	26.8	J	7.4	J	4.2	I	4.6	1	1.5	U	56.5		82.1		41.9	Т	5	U	5	U	5	U
5/22/2003	в	7.7		7.2		9.6		57.0		43.9		1.5	U	46.1	1	45.8	L	45.2	Т	5	U	5	U	5	U
6/2/2003	В	19.1		6.8		1.0	υ	5.5	1	4.2		1.5	U	81.8		49.3	L	40.1	Т	5	U	5	U	5	U
6/11/2003	В	22.9		30.9		13.2		3.2	1	1.5	U	1.5	U	33.5	1	68.1		85.7		5	U	5	U	5	U
6/16/2003	в	16.7	J	14.9	J	4.7	J	6.6	1	6.5		1.5	U	37.9	1	37.6	L	67.8		5	U	5	U	5	U
7/7/2003	в	4.6	1	5.9		3.5	Т	5.3	1	5.3		1.5	υ	81.3		69.1		63.7		5	U	5	U	5	U
7/15/2003	в	13.3		18.7		8.5		1.5	U	1.5	U	1.5	υ	111.0		60.1		67.9		5	U	5	U	5	U
7/18/2003	в	7.4		8.4		6.2	Т	1.5	υ	3.4		1.5	U	82.7		80.1		52.7		5	U	5	U	5	U
7/23/2003	в	14.2		18.4		4.1	Т	87.9		34.8		1.5	U	83.5		76.9		50.4		5	U	5	U	5	U
7/30/2003	в	9.7		10.4		7.1		19.5		36.8		9.2	1	85.2		83.5		161.0		5	U	5	U	5	U
8/13/2003	в	10.8		12.2		8.8		3.9	I	3.9	1	1.5	U	135.0		126.0		74.7		5	υ	5	U	5	U
8/29/2003	в	3.6	1	3.9	T	1.0	U	1.5	υ	1.5	U	1.5	υ	98.0		81.4		45.5		5	U	5	U	5	U
9/5/2003	в	10.8		11.1		9.6		4.9	T	5.1	1	1.5	υ	102.0		85.2		50.1		5	υ	5	υ	5	U
9/10/2003	в	5.8	1	7.3		3.1	Т	1.5	υ	3.1	1	1.5	U	77.0		57.1		30.0	Ι	5	U	5	U	5	U
9/17/2003	в	8.2		11.2		3.0	Т	1.5	U	1.5	IJ	1.5	U	81.1		78.4		54.0		5	U	5	U	5	U
9/19/2003	в	4.8	1	5.0	T	4.1	Т	5.1	IJ	1.5	U	1.5	Ū	57.9		50.7		60.8		5	Ū	5	Ū	5	Ū
10/3/2003	в	10.8		16.4		7.6		1.5	U	1.5	U	1.5	U	87.4		109.0		41.4		5	U	5	U	5	U
10/6/2003	В	5.8		9.9		5.8	1	1.5	Ū	1.5	Ū	1.5	Ū	42.0		51.3		32.6		5	Ū	5	Ŭ	5	Ū
2/6/2003	B**	3.6		8.2		1.0	Ū	13.2	-	19.6		23.2	-	38.8			1	24.5	i	0.2	Ŭ	0.2	Ū	0.2	Ū
	_						-	-									-		-	-	-		-		-
# Samples		40		40		37		40		40		37		40		40	+	37	-	40	\vdash	40		37	
# Samples Mean		8.7		10.8		6.6		8.3		7.3		3.4		74.5	\vdash	82.3	+	57.0		4.3	\vdash	4.3	+	4.4	
Median		7.0		8.3		6.2		4.0		3.9		1.5		80.6	\vdash	72.1	+	50.1		5.0	\vdash	5.0	$\left \right $	5.0	
St. Dev.		6.2		8.3		4.4		15.9		10.2		6.2		29.3		48.6	+	26.3		1.7	\vdash	1.6	+-+	1.6	
Max		22.9		39.3		16.6		87.9		43.9		31.6		135.0	\vdash	272.0	+	161.0		5.0	\vdash	5.0	+	5.0	<u> </u>
Min		0.0		1.0		1.0		1.5		1.5		0.9		20.0		272.0	+	24.5		0.2	\vdash	0.2	+-+	0.2	
			$\left \right $	-				-		-					$\left - \right $	-	-			0.2	\vdash	-	$\left \right $	0.2	
C.V.		0.72		0.77		0.67		1.91		1.40		1.81		0.39		0.59		0.46		0.39		0.38		0.35	

YEAR TWO		Amn	nonia			Nitrate -	► Nitrite			Organic I	Nitrogen			Total N	itrogen	
STORM		mg/L as	Nitrogen			mg/L as	Nitrogen			mg/Las N	Nitrogen					
FLOW	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLC W
# Samples	40	45	45	45	40	45	45	45	40	45	45	45	40	45	45	45
Mean	0.147	0.051	0.057	0.088	0.327	0.425	0.427	0.321	0.093	0.687	0.735	0.833	0.567	1.164	1.218	1.242
Median	0.134	0.029	0.030	0.082	0.316	0.340	0.348	0.282	0.047	0.616	0.606	0.736	0.540	1.040	1.030	1.220
St. Dev.	0.095	0.078	0.111	0.063	0.219	0.334	0.285	0.178	0.329	0.553	0.521	0.594	0.417	0.647	0.645	0.640
Max	0.344	0.415	0.738	0.309	0.985	1.440	1.310	0.790	2.040	2.809	3.137	3.862	2.258	4.300	4.320	4.530
Min	0.008	0.003	0.003	0.010	0.018	0.023	0.048	0.022	-0.364	-0.759	-0.069	-0.259	0.005	0.124	0.590	0.379
C.V.	0.647	1.527	1.946	0.713	0.670	0.786	0.668	0.554	3.552	0.805	0.709	0.713	0.737	0.556	0.529	0.515
EFF% (MEAN)			-11%	-55%			0%	25%			-7%	-13%			-5%	-2%
EFF% (MEDIAN)			-3%	-173%			-2%	19%			2%	-21%			1%	-18%
		Ortho-Ph	osphoru	s		Total Pho	sphorus	5			TSS			М	agnesiur	n
		m	g/l			m	۱/۱				mg/l				mg/l	
	Lab	Detection	Limit 0.0	1 mg/l	Lab	Detection	- Limit 0.01	l mg/l		Lab	D. L. O.	05				
	556	934	935	939	556	934	935	939		934	935	939		934	935	939
		BEFOR	AFTER	OUTFL		BEFORE	AFTER	OUTFL		BEFORE	AFTER	OUTFL		BEFORE		OUTFL
	RAIN	E CDS	CDS	ow	RAIN	CDS	CDS	ow		CDS	CDS	ow		CDS	CDS	ow
torms																
# Samples	40	45	45	45	40	45	45	45		45	45	45		45	45	45
Mean	0.008	0.061	0.071	0.038	0.008	0.128	0.141	0.112		13.90	14.56	14.05		5.04	2.04	1.69
Median	0.005	0.039	0.037	0.036	0.005	0.097	0.097	0.101		13.50	12.30	10.80		4.83	1.63	1.32
St. Dev.	0.005	0.132	0.195	0.021	0.005	0.146	0.211	0.050		7.14	8.98	9.98		1.73	1.61	1.17
Max	0.021	0.914	1.340	0.107	0.020	1.040	1.480	0.255		28.60	34.30	41.30		7.75	7.30	5.17
Min	0.005	0.005	0.002	0.005	0.005	0.051	0.054	0.002		0.30	2.11	1.29		2.64	0.41	0.47
C.V.	0.568	2.157	2.752	0.562	0.642	1.144	1.500	0.449		0.51	0.62	0.71		0.34	0.79	0.69
EFF% (MEAN)			-16%	46%			-10%	21%			-5%	3%			60%	17%
EFF% (MEDIAN)			5%	3%			0%	-4%			9%	12%			66%	19%
			A I							lro	-			Zir		
			Aluminun	n		Cop ug/	-			ug/				ug/		
		ug				_ab Detecti		2 0	1.	ab Detectio		2.0		_ab Detecti		30
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFOR	AFTER	OUTFL		BEFORE				BEFORE				BEFORE		
		E CDS	CDS	ow	RAIN	CDS	CDS	ow	RAIN	CDS	CDS	ow	RAIN	CDS	CDS	ow
# Samples		45	45	45	40	45	45	45	40	45	45	45	40	45	45	45
Mean		211	221	434	1.86	7.50	7.27	4.98	50	204	217	282	8	39	41	27
Median		171	181	299	1.50	5.54	5.37	3.68	39	173	183	224	8	33	37	22
St. Dev.		123	136	397	1.06	6.43	5.64	4.73	68	93	100	223	3	20	22	15
Max		481	610	2000	6.89	34.20	32.00	28.70	437	422	463	1250	16	128	141	83
Min		44	41	107	1.50	1.50	3.34	1.50	6	60	66	34	2	11	14	10
C.V.	1	0.58	0.62	0.92	0.57	0.86	0.78	0.95	1.36	0.46	0.46	0.79	0.41	0.51	0.53	0.54
EFF% (MEAN)	l		-5%	-96%			3%	32%			-6%	-30%	İ		-5%	34%
EFF% (MEDIAN)			-6%	-65%			3%	31%			-6%	-22%			-11%	40%

Table E-7. Summary statistics for storm flow for year two. Efficiency is shown as percentages of concentrations. A positive number=percent removal; a negative number=percent increase.

									-				-			
YEAR TWO		Amm	nonia			Nitrate -	⊦ Nitrite			Organic I	Nitrogen			Total N	itrogen	
BASE		mg/L as	Nitrogen			mg/L as	Nitrogen			mg/L as I	Nitrogen					
FLOW	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE	AFTER CDS	OUTFLO W
# Samples		18	18	18		18	18	18		18	18	17		18	18	17
Mean		0.056	0.061	0.095		0.831	1.105	0.231		1.142	0.466	0.853		2.029	1.631	1.192
Median		0.047	0.041	0.070		0.563	0.519	0.127		0.846	0.705	0.764		1.505	1.380	1.210
St. Dev.		0.054	0.055	0.109		0.742	1.931	0.260		0.990	1.514	0.677		1.224	0.773	0.713
Max		0.203	0.217	0.459		2.510	8.550	0.993		4.667	1.942	2.230		5.380	3.300	2.740
Min		0.003	0.010	0.008		0.001	0.218	0.001		0.424	-5.368	-0.215		0.950	0.782	0.001
C.V.		0.964	0.905	1.151		0.892	1.748	1.129		0.867	3.251	0.794		0.603	0.474	0.598
EFF% (MEAN)			-8%	-55%			-33%	79%			59%	-83%			20%	27%
EFF% (MEDIAN)			13%	-70%			8%	76%			17%	-8%			8%	12%
		Ortho-Ph	osphoru	s		Total Pho	sphorus	5			TSS			M	agnesiui	n
			g/l			m		-			mg/L				mg/L	
	Lab	Detection		1 mg/l	Lab	Detection		1 mg/l		Lat	D. L. 0.	05				
	556	934	935	939	556	934	935	939		934	935	939		934	935	939
	RAIN	BEFORE	AFTER	OUTFLO	RAIN	BEFORE	AFTER	OUTFLO		BEFORE				BEFORE	AFTER	
		CDS	CDS	w		CDS	CDS	w		CDS	CDS	ow		CDS	CDS	OW
# Samples		18	18	18		18	18	18		17	17	18		10	10	10
Mean		0.038	0.036	0.041		0.093	0.088	0.126		7.7	7.3	12.8		6.58	6.97	3.68
Median		0.036	0.035	0.036		0.093	0.089	0.125		7.7	5.0	9.1		7.51	7.63	2.82
St. Dev.		0.030	0.026	0.032		0.030	0.034	0.058		5.7	6.7	10.9		7.51	7.63	2.82
Max		0.088	0.080	0.107		0.138	0.177	0.236		22.4	29.7	53.2		9.43	9.81	7.12
Min		0.000	0.000	0.000		0.045	0.032	0.041		2.1	1.7	3.5		3.06	3.23	1.09
C.V.		0.812	0.714	0.775		0.318	0.383	0.461		0.7	0.9	0.9		1.14	1.09	0.76
EFF% (MEAN)			3%	-13%			5%	-42%			5%	-76%			-6%	47%
EFF% (MEDIAN)			1%	-1%			4%	-40%			35%	-83%			-2%	63%
			Aluminur	n		Сор	per			Iro	n			Zir	nc	
						ug/				ug/				ug/		
						ab Detection				ab Detectio				ab Detecti		
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFOR	AFTER	OUTFL	RAIN	BEFORE			RAIN	BEFORE			RAIN	BEFORE		
		E CDS	CDS	ow		CDS	CDS	ow		CDS	CDS	ow		CDS	CDS	ow
# Samples		18	18	18		18	18	18		18	18	18		18	18	18
Mean		246.4	127.1	383.6		10.3	9.2	5.6		184.2	187.7	287.4		21.4	25.2	18.7
Median		70.3	28.6	313.0		11.8	8.7	4.6		160.0	108.0	221.0		16.3	14.6	16.6
St. Dev.		750.5	49.3	532.0		7.7	5.8	8.6		44.7	39.1	232.8		9.7	8.6	10.1
Max		2550.0	179.0	2020.0		25.4	23.5	31.9		221.0	186.0	981.0		45.4	40.9	43.3
Min		10.0	10.0	92.0		1.5	3.3	1.5		97.6	78.7	159.0		10.1	10.5	7.2
C.V.		3.0	0.4	1.4		0.7	0.6	1.6		0.2	0.2	0.8		0.5	0.3	0.5
			48%	-202%			11%	40%			-2%	-53%			-18%	26%
			59%	-994%			26%	47%			33%	-105%			10%	-14%

Table E-8. Summary statistics for base flow for year two. Efficiency is shown as percentages of concentrations.

ATER QU		AM	PLES	FOR	STORM			R YE	AR TWO)								_												
							monia					Nitr	ate	+ Nitrit	e			01	rgani	ic Nitroge	n				T	otal I	litroge	n		
Date	Storm				m	g/Las DQ	s Nitroge				D		D		D	D		D		D	D	D								
Sample Collected	Event	#	556	DQ	934		935	DQ	939	DQ	556 Q	934	Q	935	Q 939		556		34	Q 935	Q	939 Q	556	DQ	934	DQ	935	DQ	939	DQ
conecteu			RAIN		BEFOR		AFTE		OUTF		RAIN	BEFOR		AFTE	OUT		RAIN		FOR	AFTE		OUTF	RAIN		BEFOR		AFTE		OUTF	
					E CDS		R CDS		LOW			E CDS		R CDS	LOV	_			CDS	R CDS		LOW			E CDS		R CDS	_	LOW	
11/7/2003	E	_	0.157		0.1010	D	0.0950	D	0.0430	D	0.258	0.381		0.309	0.08	_	0.084		558	0.606	-	1.142	0.50	N	1.04	N	1.01	N	1.27	N
1/19/2003	<u>Е</u>		0.063		0.0340	D	0.0490	ID	0.0360	D	0.084 0.018	0.350		0.343	0.02	_	0.046		646	0.608	-	1.292	0.19	N	1.03	N	1 0.772	6 I	1.35 0.835	ы
1/12/2003	E		0.011 0.097	D	0.0060	ID ID	0.0090		0.0230	D	0.018	0.234		0.281	0.08		0.053		800 518	0.482	-	0.724	0.08	N N	1.04	N	1.13	N	1.66	N
1/19/2004	E		0.130		0.0050		0.0250		0.1630	D	0.088	0.806		0.583	0.29	_	2.040		380	0.450	-	0.793	2.26	N	1.191	N	1.058	N	1.252	N
1/20/2004	E	-	0.188	D	0.0190	D	0.0170		0.0730	D	0.235	0.235		0.146	0.18	_	0.080		126	1.007	-	0.536	0.50	N	1.38	N	1.17	N	0.791	N
1/31/2004	E	7	0.018	D	0.0230	D	0.0170	D	0.0280	D	0.097	0.403		0.428	0.13	7	0.052	0.6	624	0.615		0.709	0.17	N	1.05	N	1.06	N	0.874	N
2/2/2004	E	8	0.077	D	0.0210	D	0.0150	ID	0.0210	D	0.120	0.238		0.248	0.16	1	0.029	0.4	455	0.461		0.571	0.23		0.714	N	0.724	N	0.753	N
4/13/2004	E	9	N/A		0.0214		0.0164		0.0100	ID	N/A	0.295		0.272	0.04	_	N/A		344	1.312		0.320	N/A		1.66	N	1.6	N	0.379	N
6/11/2004	E	_	0.234	D	0.0120	ID	0.0290		0.1540	D	0.404	0.061		0.121	0.42		-0.018		727	1.660		0.964	0.62	N	1.8	N	1.81	N	1.54	N
6/14/2004	E		0.177	D	0.0120	ID	0.0490		0.0760	D	0.271	0.023		0.048	0.24	_	0.012		885	1.843	-	0.646	0.46	N	1.92	N	1.94	N	0.97	N
6/15/2004 c/1c/2004	E	13	0.208 N/A	D	0.0710	D I,D	0.0770		0.1200	D	0.333 N/A	0.334		0.259	0.25	_	-0.011 N/A		765 196	0.932	-	1.021	0.53 N/A	N	1.17	N	1.58	N	1.4	N
6/16/2004 6/22/2004	E	14	N/A		0.4150		0.7380		0.0880	D	N/A	0.762		0.005	0.20	-	N/A		183	1.195	-	1.366	N/A		2.36	N	2.45	N	1.71	N
6/25/2004	E	-	0.211	D	0.0400		0.1240		0.1260	D	0.313	0.276		0.298	0.41	4	0.076		284	1.258		1.260	0.60	N	1.6	N	1.68	N	1.8	N
6/27/2004	E	-	0.124		0.0340	D	0.0670		0.0650	D	0.343	0.393		0.334	0.38	_	0.073		183	0.839		1.052	0.54	N	1.61	N	1.24	N	1.5	N
6/28/2004	E	18	0.266	D	0.0630	D	0.0640	D	0.1090	D	0.656	0.527		0.523	0.50	1	0.058	0.8	640	0.703		0.450	0.98	N	1.23	N	1.29	N	1.06	N
6/29/2004	E		0.173		0.0340		0.0360		0.0450	D	0.317	0.429		0.460	0.41	_	0.200		787	0.724		0.565	0.69	N	1.25	N	1.22	N	1.02	N
6/30/2004	E		0.195		0.0220		0.0080		0.0290	D	0.355	0.430		0.412	0.32	_	0.110		558	0.600		0.713	0.66	N	1.01	N	1.02	N	1.07	N
7/3/2004	E		0.222	_	0.0830	D	0.0690		0.0150		0.619	0.677		0.682	0.36	_	0.129		710	0.679	-	1.166	0.97	N	1.47	N	1.43	N	1.55	N
7/6/2004 7/13/2004	Е		0.170 0.342		0.0490		0.0860		0.0560	D	0.691 0.721	0.840		0.637	0.38	_	0.129		631 .759	0.547	-	0.858	0.99	N	1.52 0.124	N	1.27 0.86	NJ	1.3 1.87	N
7/16/2004	E		0.342		0.0890		0.0360		0.0290	D	0.721	0.385		0.478	0.75	_	0.197		923	0.796	-	1.212	0.84		1.39	N	1.31	N	1.46	N
7/18/2004	E		0.111		0.0120		0.0060				0.258 U	0.280	Q	0.280	Q 0.28		-0.364		638	0.714	-	0.430	0.01	υ	0.93	N	1.01	N	0.82	N
7/19/2004	E	_			0.0170		0.0190				0.120	0.160		0.150	0.28		0.034		433	0.471		0.170	0.22	N	0.61	N	0.64	QN	0.55	QN
7/20/2004	E	27	0.068	D	0.0190	D	0.0170	D	0.0930	D	0.130	0.180		0.180	0.2		0.022	0.4	401	0.413		0.117	0.22	QN	0.6	QN	0.61	QN	0.41	QN
7/21/2004	E	28	N/A		0.0590		0.0570		0.0850	D	N/A	1.090		1.110	0.19	_	N/A		461	0.413		0.325	N/A		1.61	QN	1.58	QN	0.6	QN
7/27/2004	E		0.344		0.1330		0.1300		0.0440	D	0.482	0.365		0.408	0.37		-0.006		422	0.352		1.277	0.82	J	0.92	N	0.89	N	1.7	N
8/2/2004	E	_	0.056		0.0025		0.0025		0.0820	D	0.556	0.340		0.466	0.32		-0.022		388	0.372	-	0.637	0.59	J	0.73	N	0.84	N	1.04	N
8/4/2004 8/7/2004	E	-	0.095 0.330		0.0240		0.0150		0.0900	D	0.327 0.314	0.231		0.354	0.18		0.038		685 584	0.571	-	0.672	0.46	N	0.94	N	0.94	N	0.95 1.78	N
8/8/2004	E	_	0.258		0.0340		0.0300		0.0720	D	0.314	0.322		0.254	0.20		0.092		682	0.846	-	0.467	0.53	N	0.89	N	1.12	N	0.87	N
8/10/2004	E		0.179		0.0440		0.0320		0.0590	D	0.379	0.250		0.275	0.43	_	0.072		616	0.583	-	0.467	0.63	N	0.91	N	0.89	N	0.96	N
8/16/2004	E	_	0.023		0.0025		0.0060		0.1580	D	0.139	0.123		0.311	0.27		0.048		445	0.543		0.757	0.21	N	0.57	N	0.86	N	1.19	N
8/19/2004	E	36	0.281	JD	0.0640	JD	0.0590	JD	0.0850	JD	0.985	1.357		1.030	J 0.76	4	0.024	0.0	039	1.031		-0.259	1.29	JQN	1.46	JN	2.12	JQN		JN
8/22/2004	E		0.119				0.1460		0.1100	JD	0.441 J	1.440		1.310	J 0.45		-0.020		049	0.704		0.949	0.54	JQN		JN	2.16		1.51	JQN
8/23/2004	E	-			0.0080		0.0080				0.630 J	0.565	J	0.674		_	-0.012		013	-0.012	_	0.539	-	JQN		JN	0.67	JN	1.23	JQN
8/25/2004	E	_	0.077				0.0080		0.1210		0.419 J	0.260	J	0.361	J 0.66	_	0.054		323	0.381	-	0.617	0.55	JN	0.59	JN	0.75	JN	1.4	JN
8/26/2004 9/1/2004	E				0.0320		0.0300		0.1060		0.408 0.452 YG	0.406	VO	0.439	0.29 YQ 0.26	_	0.022		422 390	0.481	-	0.439	0.68	N YQN	0.86	N YQN	0.95	N YON	0.84 1.08	QN YQN
9/1/2004 9/8/2004	E	-									0.452 YG 0.037 YG					_			560	0.418	-	0.742	0.00	YIN	0.78	YN	0.00	YN	1.00	YN
9/9/2004	E	-			0.0330		0.0025				0.097 PG 0.098 Y		Y		Y. 0.52	_	0.036		450	0.370		0.745	0.00	YN	0.62	YN	0.59		1.31	YN
9/10/2004	E	_			0.0025						0.140 Y	0.174	Y		Y 0.24		-0.019		414	0.544		0.388	0.15	YN	0.59	YN	0.78	YN	0.65	YN
9/28/2004	E	45	0.008	ID	0.0050	ID	0.0340	D	0.2840	D	0.040	0.076		0.201	0.51	1	0.062	0.8	669	0.495		1.065	0.11	N	0.75	N	0.73	Ν	1.86	N
Samples			40		44		44		44		40	44		44	44		40	4	44	44		44	40		44		44		44	
Mean			0.147		0.0445		0.0562		0.0832		0.327	0.409		0.412	0.32		0.093		639	0.680		0.764	0.567		1.092		1.148		1.167	
Median			0.134		0.0265		0.0295		0.0790		0.316	0.337		0.346	0.28	1	0.047	0.6	600	0.603		0.730	0.540		1.035		1.025	_	1.205	
St. Dev.			0.095		0.0651		0.1118		0.0537		0.219	0.319		0.269	0.18		0.329	0.4	454	0.375		0.378	0.417		0.441		0.444		0.402	
Max			0.344		0.4150		0.7380		0.2840		0.985	1.440		1.310	0.79	_	2.040		885	1.843		1.426	2.258		2.360		2.450		1.870	
Min			0.008		0.0025		0.0025		0.0100		0.018	0.023		0.048	0.02	_	-0.364		759	-0.069		-0.259	0.005		0.124		0.590		0.379	
C.V.			0.65		1.4619		1.9877		0.6453		0.67	0.78		0.65	0.56	2	3.552	0.7	711	0.551		0.494	0.737		0.404		0.387		0.344	

					Am	monia					Nitra	te + Nitri	te				Organic	: Nitro	gen			Τα	ital I	litroge	n		
Date						s Nitroge	n																				
Sample Collected	Base Flow		556 DC	934 BEFOR	DQ	935 AFTE	DQ	939 OUTF	DQ	556 (RAIN	934 BEFOR	D Q 935 AFTE	D Q 93	F	ę	D 556 Q KAIN	934 BEFOR) 2 93: AF	E	00000 Q	556 Rain	934 BEFOR	DQ	935 AFTE	DQ	939 OUTF	DG
		_	V-III	E CDS		R CDS		LOW		NAIN	E CDS	R CDS	LO	N	<u> </u>	- AIN	E CDS	R C)S	LOW	N-Kin	E CDS		R CDS		LOW	
1/10/2003	в	1		0.0080	ID	0.0340	D	0.1680	D		0.705	0.375	0.0	13			4.667	0.37	13	-0.215		5.38	N	0.782	N	0.036	N
12/3/2003	B	2		0.0650		0.1250	-	0.0720	D		0.531	0.576	0.0				0.424	0.38		-0.072		1.02	N	1.09	N	0.001	N
2/11/2003	B	3		0.0550	-	0.0240	-	0.2000	D		0.868	0.703	0.0		-		1.247	0.4		1.859		2.17	N	1.14	N	2.06	N
2/18/2003	B	4		0.0120	ID	0.0170		0.0100	ID		0.486	0.358	0.0				0.702	1.02		0.730		1.2	N	1.4	N	0.759	N
2/22/2003	B	5		0.0025		0.0150	-	0.0250			0.0013	0.688	0.6				0.946	0.40		0.447		0.95	N	1.11	N	1.1	N
1/22/2004	B	6		0.0230	D	0.0380		0.1430	D		0.125	0.295	0.1		1		1.432	0.83		0.675		1.58	N	1.17		0.972	N
1/29/2004	В	7		0.0080	I,D	0.0170	D	0.0740	D		0.198	0.218	0.1	96			1.114	0.98	5	0.376		1.32	Ν	1.2	Ν	0.646	N
3/19/2004	В	8		0.0050	I,D	0.0100	I,D	0.0600	D		0.276	0.279	0.0	99			1.229	1.07	71	0.367		1.51	Ν	1.36	Ν	0.526	N
4/2/2004	В	9		0.0680	D	0.1550	D	0.0090	I,D		0.497	0.381	0.0	53			0.745	1.04	14	1.238		1.31	Ν	1.58	Ν	1.3	N
4/27/2004	В	10		0.0410	D	0.0440	D	0.0080	I,D		0.947	0.882	0.0	53			0.512	0.60)4	0.919		1.5	Ν	1.53	Ν	0.98	N
5/20/2004	В	11		0.0480	D	0.0640	D	0.0150	I,D		0.642	0.438	0.0	93			0.430	0.48	38	1.552		1.12	Ν	0.99	Ν	1.66	N
6/5/2004	В	12		0.3410	D	0.0830	D	0.3090	D		1.150	1.100	0.3	59			2.809	3.13	37	3.862		4.3	Ν	4.32	Ν	4.53	N
7/1/2004	В	13		0.0510	D	0.0620	D	0.0080	I,D		0.527	0.491	0.0	58			0.502	0.60)7	1.594		1.08	Ν	1.16	Ν	1.66	N
7/7/2004	В	14		0.0390	D	0.2170	D	0.0690	D		0.595	0.834	0.2	27			0.726	0.82	29	0.914		1.36		1.88		1.21	N
7/30/2004	В	15		0.1640	D	0.0850	D	0.0700	D		0.448	0.533	0.4	76			1.028	0.80)2	0.764		1.64	Ν	1.42	Ν	1.31	N
9/23/2004	В	16		0.0680	YD	0.0380	YD	0.0480	YD		2.490	Y 8.550	N 0.9	93 Y			0.642	-5.3	68	0.999		3.2	ΥN	3.22	ΥN	2.04	YN
0/15/2004	В	17		0.1050	D	0.0470	D	0.1100	D		1.830	0.504	0.	1			1.885	1.47	79	2.230		3.82	Ν	2.03	N	2.74	N
Samples				17		17		17			17	17	17	·			17	17		17		17		17		17	
Mean				0.0649		0.0632		0.0822			0.724	1.012	0.2	29			1.238	0.53	35	1.073		2.027		1.611		1.384	
Median				0.0480		0.0440		0.0690			0.531	0.504	0.0	99			0.946	0.80)2	0.914		1.500		1.360		1.210	
St. Dev.				0.0822		0.0562		0.0824			0.624	1.957	0.2	68			1.071	1.65	55	0.969		1.322		0.891		1.079	
Max				0.3410		0.2170		0.3090			2.490	8.550	0.9				4.667	3.13	37	3.862		5.380		4.320		4.530	
Min				0.0025		0.0100		0.0080			0.001	0.218	0.0				0.424	-5.3		-0.215		0.950		0.782		0.001	
C.V.				1.2657		0.8883		1.0022			0.86	1.93	1.1	2	1		0.87	3.0	9	0.90		0.65		0.55		0.78	

					Ortho-F	Pho	sphoru	5					Total I	Pho	sphoru	s					TSS			
			M	G/L	Lab D	eteo	ction Lin	nit (0.01		N	1G/L	Lab D	eteo	ction Lir	mit (0.01		uç	g/L	Lab D.	L. I	D.05	
Date				D		D		D		D		D		D		D		D		D		D		
Sample			556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	934	Q	935	Q	939	1
Collected	Event	#	RAIN		BEFOR		AFTE		OUTF		RAIN		BEFOR	-	AFTE		OUTF		BEFOR		AFTE		OUTF	
44 7 0000	-		0.0110		E CDS		R CDS		LOW		0.005		E CDS	-	R CDS	-	LOW	-	E CDS		R CDS		LOW	+
11/7/2003 11/19/2003	E	1 2	0.0110	<u> </u>	0.046		0.041		0.020	I	0.005	UU	0.119		0.127		0.002		25.7	\vdash	19.3		27.5	+
12/15/2003	E	2		UU	0.044	υ	0.040	Т	0.005		0.005	U	0.095		0.097		0.083		14.7 15.8		17.1	J	16.8 25.7	+
1/12/2003	E	- 3		U	0.005	Ť	0.005	1	0.015	+	0.005	U	0.075		0.067		0.154	-	10.7	J	10.8	J	25.7	+
1/19/2004	E	4 5	0.0050	Ŭ	0.046	-	0.025		0.029		0.005	U	0.075		0.000		0.178		9.9		8.9		28.5	+
1/19/2004	E	6	0.0050	U	0.046	υ	0.005	υ	0.050		0.005	U	0.064		0.093		0.178		9.9 12.4		11.8		20.5	+
1/31/2004	E	7	0.0050	U	0.005	Ť	0.005	T	0.050		0.005	U	0.156		0.145		0.080		4.5		5.0		9.1	+
2/2/2004	E	8	0.0050	Ŭ		υ	0.028	1	0.020	-	0.005	U			0.064		0.089		4.5 5.4		7.2		7.7	+
	E	9	0.0050	0	0.005	0	0.021			-	0.005	0	0.076					-	5.4 18.7				4.7	+
4/13/2004 6/11/2004	E	9 11	0.0160		0.006		0.002		0.052		0.020	QI	0.121	Q	0.150	Q	0.085		18.7		18.4 13.6		4.7	+
6/11/2004	E	12	0.0160	÷	0.072		0.062		0.077		0.020		0.230	Q	0.230	Q	0.200	Q	19.3		12.9		6.4	+
6/14/2004	E	13	0.0141	÷	0.052		0.057		0.046		0.020	QI	0.180	G	0.220	Q	0.120	Q	9.5		6.9		18.1	+
6/15/2004	E	13	0.0720	-	0.052		0.061	1	0.064		0.005		0.130		0.130		0.150		9.5	\vdash	7.0		31.0	+
6/22/2004	E	14			0.020	-	1.340	-	0.089				1.040		1.480		0.200		14.6	$ \rightarrow$	13.9		13.9	+
6/22/2004	E	15	0.0169		0.974		0.105		0.040		0.010	1	0.210		0.190		0.200		14.6	$ \rightarrow$	13.9		41.3	+
6/27/2004	E	17	0.0109	÷	0.056		0.058		0.059		0.017	÷	0.210	J	0.155	J	0.255	J	11.3	J	7.1	J	37.6	+
6/28/2004	E	18	0.0120	÷	0.053		0.054		0.035		0.012	i.	0.171	J	0.092	J	0.235	J	9.6	J	6.4	J	6.0	+
6/29/2004	E	19	0.0740	÷	0.045		0.034		0.048		0.012	÷	0.093	J	0.084	J	0.070	J	6.0	J	5.7	J	6.5	+
6/30/2004	E	20	0.0270	÷	0.030	1	0.047		0.043		0.016	i.	0.084	J	0.098	J	0.107	J	4.9	J	6.3	J	8.8	+
7/3/2004	E	21	0.0050	ΰ	0.061	-	0.052		0.045		0.018	÷	0.102		0.030	5	0.107	5	3.29	- 3	3.37	3	7.68	+
7/6/2004	E	22		Ŭ	0.050		0.068		0.045		0.005	ΰ	0.102		0.104		0.130		8.6		2.1		11.4	+
7/13/2004	E	23	0.0120	Ť	0.085		0.089		0.046		0.005	U	0.124		0.138		0.138		0.30		8.85		8.81	+
7/16/2004	E	24		ΰ	0.053		0.005		0.040		0.005	U	0.124		0.136		0.130		19.90		23.20		12.00	+
7/18/2004	E	24	0.0050	Ŭ	0.038		0.045		0.028	÷	0.005	Ŭ	0.073		0.074		0.067		5.04		6.36		5.56	+
7/19/2004	E	26		Ŭ	0.033		0.033		0.033		0.005	Ŭ	0.069		0.067		0.058		8.41		8.28		5.14	+
7/20/2004	E	27		Ŭ	0.039		0.036		0.034		0.005	υq	0.051	Q	0.054	Q	0.048	0	6.64		9.62		4.29	+
7/21/2004	E	28	0.0000	0	0.063		0.056		0.054		0.005	00	0.081	Q	0.089	Q	0.040	Q	3.52		3.70		4.86	+
7/27/2004	E	29	0.0120	1	0.000		0.066		0.023	1	0.012	1	0.141	G	0.102	Q	0.117	9	13.10		5.62		36.20	+
8/2/2004	E	30	0.0050	ΰ	0.070	Т	0.013	T	0.013	÷	0.005	NJ	0.054	QJ		01	0.066	0	13.5	J	11.3	J	1.3	+
8/4/2004	E	31		Ŭ	0.028	i	0.017	i	0.015	÷	0.005	U	0.092	30	0.090	30	0.078	0.0	23.3	-	28.30		5.9	+
8/7/2004	E	32	0.0050	Ŭ	0.024	i	0.018	i	0.023	÷	0.005	Ŭ	0.082		0.098		0.081		28.6		30.6		16.4	+
8/8/2004	E	33		Ŭ	0.024	÷	0.037	•	0.058		0.005	Ŭ	0.083		0.085		0.095		25.9		28.4		7.2	+
8/10/2004	E	34		Ŭ	0.020		0.029	Т	0.030	1	0.005	Ŭ	0.003		0.086		0.087		25.3		33.6		16.3	+
8/16/2004	E	35		Ŭ	0.026	1	0.025	i	0.023	÷	0.005	Ŭ	0.056		0.072		0.097		11.7		15.8		8.0	+
8/19/2004	E	36	0.0050	Ŭ	0.042	· ·	0.024	i	0.046	•	0.005	ŬĴ	0.129	J	0.124	J	0.173	J	19.7		31.5		17.7	+
8/22/2004	E	37		Ŭ	0.047		0.060		0.015	I	0.005	UJ	0.100	J	0.144	J	0.076	J	15.3	$ \rightarrow$	25.6		10.8	+
8/23/2004	E	38	0.0050	Ŭ	0.036		0.032	Т	0.018	i	0.005	UJ	0.086	J	0.084	J	0.078	J	20.7	$ \rightarrow$	22.1		9.7	+
8/25/2004	E	39	0.0050	Ŭ	0.033		0.032	i	0.016	i	0.005	UJ	0.064	J	0.069	J	0.058	J	13.9	J	12.9		7.6	+
8/26/2004	E	40	0.0050	Ŭ	0.039		0.033	•	0.036		0.005	Ŭ	0.085		0.097	-	0.110	-	20.3		34.3		11.8	+
9/1/2004	E	41		'QI.			0.028	T	0.048		0.011	YQ	0.058	YQ		YQ	0.101	YG	11.1	Y	12.3	Y	11.5	+
9/8/2004	E	42		ΥL	0.037	Υ	0.038	Y	0.057	Υ	0.005	JYC	0.085	Y	0.095	Y	0.092	YC	21.4		20.4	Y	4.1	
9/9/2004	E	43		YL	0.053	Ŷ	0.053	Ŷ	0.046	Ŷ	0.005	JYC		Ý	0.082	Ŷ	0.105	Y	18.4	Y	13.0	Ŷ	10.6	T
9/10/2004	E	44		ŪΫ		Ý	0.051	Ý	0.047	Ý	0.0050			Ý	0.128	Ý		Ý	28.3	Ý	25.9	Ý	9.6	T
9/28/2004	E	45		υ	0.024	T	0.030	T	0.032	T	0.0050		0.102		0.081		0.092		14.1		24.2		12.0	T
¥ Samples			40		44		44		44		40		44		44		44		44		44		44	Ť
Mean			0.0081		0.060		0.070		0.039		0.008		0.125		0.136		0.110		13.8		14.5		13.7	Ť
Median			0.0050		0.039		0.037		0.038		0.005		0.096		0.096		0.099		13.3	$ \rightarrow$	14.3		10.7	+
St. Dev.	++		0.0046		0.033		0.037		0.030		0.005		0.036		0.030		0.033		7.2	$ \rightarrow$	9.1		9.8	+
																				$ \rightarrow$				+
Max			0.0210		0.914		1.340		0.107		0.020		1.040		1.480		0.255		28.6		34.3		41.3	+
Min			0.0050		0.005		0.002		0.005		0.005		0.051		0.054		0.002		0.3	$ \longrightarrow $	2.1 0.63		1.3	4

Date					Ortho-Ph	_							Total Ph	os	ohorus						TSS			
sample	base	#			1	ИG.	/L							MG	97L						ug/L			
collected	flow			D		D		D		D		D		D		D		D		D		D		Т
			556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q		Q	934	Q	935	Q	939	
			RAIN		BEFOR		AFTE		OUTF		RAIN		BEFOR		AFTE		OUTF		BEFOR		AFTE		OUTF	
				-	E CDS		R CDS		LOW			-	E CDS		R CDS	-	LOW		E CDS		R CDS		LOW	+
11/10/2003	в	1			0.023	I.	0.024	1	0.086				0.045		0.054		0.144		2.12		1.96		8.26	
12/3/2003	в	2			0.046		0.028	Т	0.012	Τ			0.082		0.062		0.041		7.66	J	3.87	J	16.80	Ť
12/11/2003	В	3			0.019	Т	0.032		0.005	U			0.119		0.032		0.236		13.10		1.72	T	53.20	T
12/18/2003	В	4			0.005	U	0.005	U	0.016	Т			0.060		0.103		0.070		8.33	J	9.17	J	10.60	T
12/22/2003	В	5			0.005	I	0.013	T	0.011	U			0.119		0.045		0.048		17.60	J	5.28	J	3.48	Τ
1/22/2004	В	6			0.005	U	0.005	U	0.030	1			0.138		0.064		0.107		10.00		7.50		13.20	Τ
1/29/2004	В	7			0.005	U	0.010	1	0.040				0.133		0.119		0.053		9.24		8.83		7.37	
3/19/2004	В	8			0.005	U	0.005		0.107				0.109		0.121		0.197		2.60		11.70		8.36	
4/2/2004	В	9			0.000		0.000		0.000				0.067	Q	0.079	Q	0.190	Q	5.61		4.92		17.50	
4/27/2004	В	10			0.067		0.057		0.107				0.110		0.090		0.168		3.23		2.39		8.20	
5/20/2004	В	11			0.025		0.038		0.041				0.056		0.064		0.148		3.43		3.85		18.00	
6/5/2004	В	12			0.114		0.113		0.005	U			0.280	Q	0.350		0.210		15.9		16.9		28.9	
7/1/2004	В	13			0.058		0.057		0.049				0.084	J	0.085	J	0.184	J	2.83	J	2.59	J	15.90	1
7/7/2004	В	14			0.050		0.080		0.028				0.096		0.177		0.098		2.85		29.70		7.93	
7/30/2004	В	15			0.088		0.068		0.024				0.130		0.115		0.067						7.50	_
9/23/2004	В	16			0.082	Υ	0.059	Y	0.054	Υ			0.107	Υ	0.090	Υ	0.124	Υ	8.37	Υ		Υ	5.08	_
10/15/2004	В	17			0.061		0.059		0.038				0.046		0.108		0.171		22.40		4.99		12.00	+
# Samples					17		17		17				17		17		17		16		16		17	+
Mean				_	0.039		0.038		0.038			_	0.105		0.103		0.133		8.45		7.86		14.25	_
Median					0.025		0.032		0.030				0.107		0.090		0.144		8.00		5.14		10.60	_
St. Dev.					0.035		0.032		0.034			_	0.055		0.072		0.062		6.09		7.16		11.79	_
Max					0.114		0.113		0.107				0.280		0.350		0.236		22.40		29.70		53.20	4
Min					0.000		0.000		0.000				0.045		0.032		0.041		2.12		1.72		3.48	4
C.V.					0.91		0.83		0.88				0.52		0.70		0.47		0.72		0.91		0.83	

					Alumin	um							рег			_				Iro								Ziı				_
Date											Lab Dat	ug							Lab Data	ug/							Lak Da	ug/		20		
sample	event			D		D		D		D	Lab Deti	D	on Limit :	3.U		п		D	Lab Dete	D	n Limit 50			D		D	Lab De	D	on Limit	3U		
collected	even		934	Q	935	Q		Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	
			BEFOR		AFTER CDS	1	OUTFL OW		RAIN	E	BEFORE CDS		AFTER CDS		OUTFL OW		RAIN		BEFORE CDS		AFTER CDS		OUTFL OW		RAIN		BEFORE CDS		AFTER CDS		OUTFLO W	J
1/7/2003	Е	1	E CDS 337.0	N	210.0	N		N	1.50	U	13.70		9.39		5.00		15.9		422		279		448		8.8	-	56.5	-	51.1	-	30.1	-
1/19/2003	Ē	2	183.0	N		N		D	1.50	U	10.50	1	8.81	÷	1.50	ΰ	6.3	ΰ	273	-	273		209		4.9		54.5		55.8		16.5	t
2/15/2003	Ē	3	167.0	N	132.0	N		N	1.50	Ŭ	33.00		19.60		6.47	Ť	6.3	Ŭ	186		153		397		2.4		33.2		28.9		37.6	t
/12/2004	Ē	4	105.0	N	111.0	N	415	N	1.50	Ŭ	10.40		9.31		6.48	i	6.3	Ŭ	162		183		329		5.5		31.8		41.5		57.1	t
/19/2004	Ē	5	77.6	N	103.0	N	1060	N	1.50	Ŭ	1.50	U	3.34	i	6.88	i	21.3	Ť	173		173		563	-	6.5	<u> </u>	19.2		23.8		52.0	t
/20/2004	E	6	135.0	N		N	404	N	4.05	1	13.60		12.00		4.33	T	20.9	T	114		191		232		10.6		22.4		35.8		28.1	t
/31/2004	E	7	43.8	IN	49.3	IN	408	N	1.50	U	8.80	1	7.55	1	1.50	U	6.3	U	113		108		187		4.5	T	17.7		18.6		14.0	1
2/2/2004	E	8	82.2	N	89.8	N	247	N	6.89	1	6.42	1	5.54	1	1.50	U	6.3	U	143		121		143		5.0	1	25.1		25.4		21.7	
/13/2004	E	9	249.0	N	181.0	N	135	N			10.3	Ν	9.09	IN	4.59	IN			254	N	219	N	113	N			69.2	N	57.0	N	17.3	T
/11/2004	E	11	51.7	1	46.6	1	469		1.50	U	5.84	1	5.75		9.42	1	78.8		70.2		77.5		307		14.7		11.4		14.5	J	34.3	Τ
/14/2004	E	12	46.3	IN	40.5	IN		N		UN	5.11	IN	5.39	IN	3.32	IN	44.2	Ν	60.2	Ν	66	Ν	78.5	N	7.3	Ν	11.4	N	13.9	Ν	9.9	
/15/2004	E	13	150.0	N	67.0	N		N	1.50	UN	3.97	IN	4.36	IN	6.64	IN	33.5	IN		N	106	N	33.5	IN	6.2	IN	37.0	N	26.6	N	30.1	+
/16/2004	E	14	53.4	IN	60.0	IN		N			3.41	IN	3.57	IN	3.78	IN			86.2	N	111	N	757	Ν			28.2	N	25.2	Ν	30.7	
6/22/2004	E	15	179.0		163.0		299				10.20		10.00		4.20				225		219		236				62.9		65.9		18.2	_
6/25/2004	E	16	164.0		178.0	_	1140		1.50	U	6.75	1	6.41	1	14.30		105		137		174		749		9.9		25.6		31.0		57.9	4
5/27/2004	E	17	187.0		187.0	_	2000	_	4.10	1	5.71	1	4.42	1	28.70		437.0	J	173	J	158	J	1250	J	11.4		32.2		26.0		82.9	4
5/28/2004	E	18	171.0		137.0	_	352	_	1.50	U	4.67	1	3.51	1	3.42		119.0	J	175		133		224		12.5		32.1		30.1		24.6	-
5/29/2004	E	19	102.0		121.0		206		1.50	U	3.11	1	3.36	1	1.50	U	48.9	-	142		144		146		7.9		29.6		33.2		19.9	-
/30/2004	E	20	98.9 77.4		124.0 94.6		288 183		1.50 1.50	U	3.75 4.03	1	4.12		3.02		93.8 53.2	-	119 117		139		188 166		8.5 15.3		30.4 22.5		37.0 27.4		21.2	-
7/3/2004 7/6/2004	E	21	130.0		94.6 50.7	1	291		1.50	U	6.39	1	3.49	1	3.45 4.70	+	53.2	-	117		120 97.7		253	-	10.9		22.5		14.3		22.4 26.9	+
//6/2004	E	22	112.0		219.0		357		1.50	U	4.76	-	5.30	÷	4.70 5.01	+	49.9	-	131	-	181		255		10.9		24.2		37.4		26.9 38.0	-
/15/2004	Ē	24	435.0		415.0	-	224	-	1.50	U	6.76	1	7.72	÷	3.91	÷	62.6	-	371		400		197		11.1		58.5		70.7		21.2	-
/18/2004	Ē	25	103.0		140.0		160		1.50	Ŭ	4.52	1	4.72	i	1.50	u i	34.7	1	102		136		124	-	5.9		29.2		32.6		18.7	-
7/19/2004	Ē	26	145.0		165.0		220		1.50	Ŭ	4.99	i	5.25	ti	3.04	Ť	39.5	t	140		159		177		5.2	i.	28.4		35.6		23.1	1
7/20/2004	Ē	27	138.0		174.0		178		1.50	Ŭ	4.23	i	4.62	i	1.50	Ú	15.2	i	123	-	156		125		4.5	i	28.9		32.4		18.2	1
7/21/2004	Ē	28	167.0		95.6	-	167		1.00		1.50	Ū	4.13	i	1.50	Ŭ	10.2	Ľ.	107		134		107		1.0	· ·	16.8		19.5		16.9	t
/27/2004	E	29	368.0		262.0		1220		1.50	U	5.88	ī	4.49	i	13.60	-	25.0	1	294		216		737		8.8		39.9		31.2		54.4	1
8/2/2004	E	30	193.0		164.0		166		1.50	U	3.36	Ì	3.86	Ì	3.27	T	14.5	Ť	167		166		130		7.2		43.0		41.6		21.4	
8/4/2004	E	31	347.0		302.0		120		1.50	U	5.54	1	5.67	1	1.50	U	60.4		302		309		117		10.1		71.3		65.6		13.3	
8/7/2004	E	32	423.0		401.0		492		1.50	U	5.68	1	4.99	1	3.69	T	43.8		384		342		295		7.7		63.1		53.4		26.1	
8/8/2004	E	33	481.0		610.0		306		1.50	U	4.93	1	25.40		1.50	U	13.1	T	318		411		228		5.8	1	33.8		39.2		16.3	
3/10/2004	E	34	399.0		426.0		440		1.50	U	4.09	1	4.36	1	3.29	Τ	54.7		278		302		289		5.0	1	29.3		32.7		21.5	
3/16/2004	E	35	158.0		218.0		202		1.50	U	3.36	IJ	4.01		3.17	1	19.2	1	130		198		191		4.0		33.3		41.9		13.2	
3/19/2004	E	36	303.0		482.0		519		3.24		10.50		8.01		5.96	1	45.7		286		463		370		15.9		54.1		86.1		30.7	
3/22/2004	E	37	245.0		360.0		197		1.50	U	7.48	1	8.46	1	3.87	T	56.6		260		409		230		10.1		48.6		66.5		16.4	
3/23/2004	E	38	303.0		346.0		195		3.49	1	5.27	Т	5.38	1	3.46	1	39.0	1	251		295		180		10.4		48.8		51.1		23.3	1
3/25/2004	E	39	228.0		243.0	_	205		1.50	U	5.42	1	5.37	1	3.55	1	53.4		202		223		178		7.7		43.4		43.8		20.2	4
3/26/2004	E	40	339.0		415.0	_	278		1.50	U	6.38	1	6.97	1	3.00	IJ	44.4	.	286		349		164		5.8	1	45.8		50.1		16.7	4
9/1/2004	E	41	141.0		173.0		199	+	1.50	U	5.42	1	5.56	1	3.57		25.7	1	136		171		211		7.7		41.3		42.6		22.3	4
9/8/2004	E	42	269.0		306.0	-	139	\vdash	1.50	U	4.64	1	5.20	1	1.50	U	65.2	-	214		261		131		6.4		40.6		46.2		13.6	4
9/9/2004 9/10/2004	E E	43	410.0 412.0		331.0 428.0		461 325	-	1.50 1.50	UU	4.32 9.98	Ι	4.18	1	3.68	+	34.7 12.5	+	279 288		248 314		365 232		3.4		53.2 33.2		38.3 35.6	$\left \right $	38.3 23.8	+
9/10/2004 9/28/2004	E	44			428.0	-	325	\vdash	1.50	U	9.98		5.20 13.30		3.81 8.16	++	37.6	H	288		314		252		5.1 9.1				49.3	+	23.8	+
	E	43			332.U 44	-	44	-	40			_	44			-	37.6 40	1	411		309 44		<u></u> 44	J	9.1 40		54.6 44	+ +	49.3	+ +	 44	+
Samples			44 210.48		44 217.64	-	436.34	\vdash	40	+	44 6.89		44 6.71		44		40 50	-	202		214		279		40 8.0	+	37.4		39.2	$\left \right $	44 26.9	+
Mean Median			210.48	+	179.5		295	\vdash	1.86	+	5.48		5.34	+	3.63		39	-	173		182		2/9		7.7	+	37.4	+	39.2	+	26.9	+
Median St. Dev.		-	123.92		179.5		401.66		1.50	+	5.48		4.24	$\left \right $	4.65		- 39 - 68	-	94		99		218		3.3	+-+			36.4	$\left \right $	14.5	+
Max		-	481		610	-	2000	-	6.89	+	33.00		4.24 25.40	$\left \right $	28.70		437	-	422		463		1250		3.3 15.9	+-+	71.3		86.1	-	82.9	+
Min			43.80		40.50	-	107	-	1.50	++	1.50		3.34	$\left \right $	1.50		437	1	422		465		34		2.4	+	11.4		13.9		9.9	+
C.V.			0.59		0.62	-	0.9205		0.57	+ +	0.73		0.63	+ +	0.97		1.36	-	0.46		0.46		0.80		0.41	+++	0.41		0.41	+	0.54	+
		-	0.00	-	0.02	-	5.5205	-	0.01		0.10		0.00		0.51	-	1.55	-	0.40		0.40		0.00		0.47	+ +	0.41	-	0.41	-	0.04	+

					Alumin	um						Cop								Iro								Zin			
												ug/	Ľ							ug/l	L							ug/	L		
Date											Lab Det	ectio	on Limit 🤇	3.0					Lab Dete	ctior	n Limit 50	.0					Lab Det	ectio	on Limit :	30	
sample	event	#		D		D		D		D		D		D		D		D		D		D		D		D		D		D	
collected			934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939
			BEFOR		AFTER	.	OUTFL		RAIN		BEFORE		AFTER		OUTFL		RAIN		BEFORE		AFTER		OUTFL		RAIN		BEFORE		AFTER		OUTFLO
			E CDS		CDS		OW		NAIN		CDS		CDS		ΟW		IVAIII		CDS		CDS		OW		NAIN		CDS		CDS		W
1/10/2003	В	1		UN		UN		Ν			1.50	U	3.32	1	1.50	U			160		186		260				10.1		12.3		18.6
12/3/2003	В	2	28.90	IN	28.60	IN	276	Ν			5.55	1	8.01	Τ	1.50	U			121		101		164				21.4		11.5		10.3
2/11/2003	В	3	93.40	Ν	22.70	IN	2020	Ν			18.40		8.72	1	6.97	1			212		95		981				45.4		13.0		43.3
2/18/2003	В	4	77.00	Ν	75.70	N	330	Ν			20.70		23.50		4.31	1			102		108		211				15.8		19.2		15.3
2/22/2003	В	5	49.40	IN	26.60	IN	538	Ν			25.40		12.60		4.63	1			135		104		308				11.4		10.5		13.4
/22/2004	В	6	98.50	Ν	81.20	N	625	Ν			14	Ν		Ν	3.83	IN			98	Ν	79	Ν	300	Ν			11.7	Ν	12.6	Ν	22.8
1/29/2004	В	7	70.30	Ν	62.40	IN	313	Ν			14.3		12.80		1.50	U			123		93		159				15.5	\square	19.4		23.0
3/19/2004	В	8	233.00	Ν	68.00	N	233	Ν			5.61	IN	6.17	IN	5.61	IN			221	Ν	118	Ν	221	Ν			16.6	Ν	14.6	Ν	16.6
4/2/2004	В	9	25.60	IN	23.40	IN	195	Ν			11.8	Ν	12.20	Ν	31.90	Ν			178	Ν	174	Ν	192	Ν			22.9	Ν	40.9	N	10.7
4/27/2004	В	10				UN		Ν			3.37	IN	3.73	IN	4.82	IN			179	Ν	185	Ν	189	Ν			16.3	Ν	15.0	N	7.2
5/20/2004	В	11	2550		179.00		305	Ν			6.82	IN	5.16	IN	8.75	IN			206	Ν	135	Ν	283	Ν			18.3	Ν	21.0	Ν	27.5
6/5/2004	В	12	245.0	Ν	372.0	N	324	Ν			34.2	Ν	32.00	Ν	12.30	Ν			273	Ν	366	Ν	387	Ν			128	Ν		Ν	47.4
7/1/2004	В	13	61.80	1	53.30		165				1.50	U	1.50	U	1.50	U			101		98.2		164				11.8		13.0		13.8
7/7/2004	В	14	54.90		524.00		167				4.44	IJ	13.00		1.50	U			104		498		171				12.0		91.3		17.7
7/30/2004	В	15			332.00		218				7.23	1	6.86	1	3.37	1			393		329		154				79.5		66.9		20.7
9/23/2004	В		243.00		288.00		111				37		89.7		5.02	1			276		274		144				33.4	\square	34.2		11.3
10/15/2004	В	_	170.00	J	199.00	_	352	J			5.61	1	3.14		10.20				245	J	299	J	731	J			12.5		12.6		37.3
1/15/2004	В	18			206.00		346				1.50	U	1.50	U	1.50	U			253		300		302				7.7		19.1		16.6
11/24/2004	В	19	97.70		98.10		277				1.50	U	1.50	U	1.50	U			209		202		239				23.5		26.8		10.7
# Samples			19		19		19				13		11		18				19		19		19				19		19		19
Mean			246.34		140.00		380.47				12.55		9.88		6.15				189		197		293				27.0		31.3		20.2
Median			70.30		28.60		313				11.80		8.72		4.63				160		108		221				16.3		14.6		16.6
St. Dev.			750.49		49.28		532.02				7.73		5.79		8.62				45		39		233				9.7		8.6		10.1
Max			2550		179		2020				25.40		23.50		31.90				221		186		981				45.4	\square	40.9		43.3
Min			10		10		92				1.50		3.32		1.50				98		79		159				10.1		10.5		7.2
C.V.			3.05		0.35		1.3983				0.62		0.59		1.40				0.24		0.20		0.80				0.36		0.27		0.50

DISSOLVED	META	LS FOR S	STOR		w - y	EAR T	wo																							
Date			Diss	olved Z	inc				Disso	ved	Copper						Diss	olve	d Iron						Dis	solved	Lead			
sample	event			ug/L						ug/L	-							ug/l								ug/L				
collected	base			ection Li					Lab Dete								Lab Dete										Limit 2.0			
		934	DQ		DQ	939	DQ	556 D		DQ		DQ		DQ	556	DQ	934	DQ		DQ		DQ	556	DQ	934	DQ	935	DQ	939	DQ
STORM		BEFORE CDS		AFTER CDS	0	OUTFLO W		RAIN	BEFORE CDS		AFTER CDS		OUTFLO W		RAIN		BEFORE CDS		AFTER CDS		OUTFLO W		RAIN		BEFORE CDS		AFTER CDS		OUTFL OW	
11/7/2003	E	23.4		24.2		13.8			4.8	1	4.5	1	3.6	1			68.0		71.3		66.3				5	U	5	U	5	U
11/19/2003 12/15/2003	E	20.6 12.0		21.6 13.0		9.2 8.7			3.6		3.5 4.6		1.5 1.5	U			36.2 31.1		42.3 30.3		59.7 27.8	1			5 5	UU	5 5	U U	5 5	U
1/12/2003	E	15.7		26.5		27.8			3.7	i	3.8	i	3.4	1			34.9	i	55.5		24.5	÷			5	U	5	Ŭ	5	U
1/19/2004	E	10.2		11.2		11.2			1.5	U	1.5	U	1.5	U			57.5		59.3		35.8	i			5	U	5	Ū	5	Ŭ
1/20/2004	E	13.4		17.6		15.8			8.8	I	7.2	1	1.5	U			46.4		47.2		54.3				5	U	5	U	5	U
1/31/2004	E	12.7		13.2		7.0			5.9	1	4.4	1	1.5	U			52.5	<u> </u>	45.6		41.0				5	U	5	U	5	U
2/2/2004	E	17.0	NI	16.6	NI	13.8	NI		4.6	1	1.5	U	1.5	UUN			75.3	NI	51.2	N	40.7		I		5 5	U UN	5 5	U	5	U
4/13/2004 6/5/2004	E	49.2 109.0	N N	40.7 112.0	N	10.2 29.3	N N		7.0	IN N	4.7 22.3	IN N	1.5 7.2	IN			79.5 83.5	N	75.6 73.7	N	31.7 73.5	IN N			5	UN	5	UN UN	5 5	UN
6/11/2004	E	12.1	IN	18.0	J	15.1			3.5	1	3.7		1.5	U			44.0		56.7		23.8	1			5	U	5	U	5	U
6/14/2004	E	5.2	IN	7.5	N	7.2	N		1.5	UN	3.1	IN	1.5	UN			16.6	IN	17.7	IN	13.8	IN			5	UN	5	UN	5	UN
6/15/2004	E	23.1	Ν	19.5	N	11.9	N		1.5	UN	1.5	UN	1.5	UN			28.3	IN	43.6	N	33.6	IN			5	UN	5	UN	5	UN
6/16/2004	E	21.4	Ν	22.4	N	5.0	IN		1.5	UN	3.8	UN		UN			31.1	IN	46.9	Ν	52.6	Ν			5	UN	5	UN	5	UN
6/22/2004	E	38.1		44.6		5.5	1		6.5	<u> </u>	5.3	<u> </u>	1.5	U			58.1	<u> </u>	55.0		39.6	<u> </u>			5	U	5	U	5	U
6/25/2004 6/27/2004	E	14.7 17.6		18.4 18.3		10.7 8.2			1.5 1.5	U	3.5 1.5	I U	3.5 1.5	U			43.0 27.7	-	34.5 31.0	IN IN	22.3 24.0				5	UU	5 5	U U	5 5	U
6/28/2004	E	17.8		30.1		15.3			1.5	U	1.5	U	3.4	1			43.1	-	38.2		14.0	÷			5	U	5	U	5	U
6/29/2004	E	24.4		29.0		17.8			1.5	U	1.5	U	1.5	U			58.9		55.1		23.7	i			5	U	5	Ŭ	5	Ŭ
6/30/2004	E	24.5		27.7		11.9			1.5	U	1.5	U	1.5	U			56.7		52.4		21.8	Т			5	U	5	U	5	U
7/3/2004	E	18.4		22.2		14.5			1.5	U	3.3	1	1.5	U			66.2		60.0		28.8	1			5	U	5	U	5	U
7/6/2004	E	14.3		10.5		13.4			3.8	1	1.5	U	1.5	U			51.3	1	58.4		23.3				5	U	5	U	5	U
7/13/2004 7/16/2004	E	22.0 24.8		25.4 27.7		21.9 9.3			4.8	-	3.3 3.4		1.5 1.5	U			53.4 37.8		46.4 49.7		21.9 26.9	1			5 5	UU	5 5	U U	5 5	U
7/18/2004	E	24.8		21.7		9.3			3.9		3.4	÷	1.5	U			31.0	÷	29.1		19.9	÷			5	U	5	U	5	U
7/19/2004	E	17.0		16.0		13.5			1.5	Ū	1.5	U	1.5	U			26.6	i	20.5	i	14.3	i			5	U	5	U	5	U
7/20/2004	E	21.6		19.1		10.7			1.5	U	1.5	U	1.5	U			28.7	I	26.4	1	46.3	Т			5	U	5	U	5	U
7/21/2004	Е	16.7		16.4		12.3			1.5	U	1.5	U	1.5	U			78.5		76.1		21.4	1			5	U	5	U	5	U
7/27/2004	E	16.1		14.8		8.3			3.0	1	4.5	1	1.5	U			21.3	<u> </u>	21.2	1	18.5	-			5 5	U	5	<u> </u>	5 5	U
8/2/2004 8/4/2004	E	22.4 32.1		26.4 30.1		11.1 7.8			1.5 1.5	U	1.5 1.5	U	1.5 1.5	U U			17.9 30.2	H	36.0 49.6	1	15.9 25.9	1			5	UU	5 5	U U	5	U
8/7/2004	E	19.2		18.3		8.8			1.5	U	1.5	U	1.5	U			20.7	÷	20.2		20.4	÷			5	U	5	U	5	U
8/8/2004	E	10.1		10.3		9.3			1.5	U	1.5	U	1.5	U			14.7	i	23.2	i	71.4				5	U	5	U	5	U
8/10/2004	E	11.1		9.9		8.1			1.5	U	4.4	1	1.5	U			12.8	I	14.2	1	34.4	Т			5	U	5	U	5	U
8/16/2004	E	6.6		20.8		6.6			1.5	U	3.5	1	1.5	U			30.6	1	27.9	1	30.6	1			5	U	5	U	5	U
8/19/2004	E	26.9		30.5		8.7			6.9		1.5	U	1.5	U			57.9		22.8	1	36.0	1	I		5 5	U	5 5	<u>U</u>	5	U
8/22/2004 8/23/2004	E	25.4 22.5		29.2 20.5		7.8 13.8			4.5	1	4.7 1.5	I U	3.4 1.5	U			64.6 20.3		70.5 21.7		35.9 32.4		l		5	UU	5	U U	5 5	U
8/25/2004	E	18.4		17.9		11.7			1.5	U	1.5	U	1.5	U			20.3	i	27.6	1	24.4	i	l		5	U	5	U	5	U
8/26/2004	E	17.5		16.5		7.4			6.4	I	1.5	U	4.5	IJ			21.9	i	21.9	i	31.0	·	j –		5	U	5	U	5	U
9/1/2004	Е	22.7		22.1		9.8			1.5	U	1.5	U	1.5	U			17.7	Т	21.7	1	50.1				5	U	5	U	5	U
9/8/2004	E	14.9		14.8		9.4			1.5	U	1.5	U	1.5	U			6.3	U	18.0	1	6.3	U	I		5	U	5	U	5	U
9/9/2004	E	11.6 10.7		11.1 9.0		13.8 8.9			1.5	U	1.5 1.5	U	1.5 1.5	U			22.3 26.5		26.5 29.3		78.6 33.5	-	I		5 5	U U	5 5	U U	5 5	U
9/10/2004 9/28/2004	E	10.7		9.0		20.0	1		5.4	1	6.1	1	5.0	1			26.5	1	29.3	1	20.0	-			5	U	5	U	5	U
5/20/2004		12.1		1-4.1		20.0			5.4		0.1		0.0				13.0		20.2		20.0					5		5		
# Samples		45		45		45			45		45	-	45				45		45	-	45				45		45		45	
# Samples Mean		21.0		22.4		11.9			3.8	-	3.2		2.0				39.4	-	40.5		33.2	-	1		45 5		45 5		45 5	
Median		18.4		19.1		10.7			1.5		1.5		1.5				31.1		38.2		28.8		1		5		5		5	
St. Dev.		15.6		15.8		5.1			5.1		3.3		1.2				20.3		18.0		16.8		j –		0		0		0	
Max		109.0		112.0		29.3			34.2		22.3		7.2				83.5		76.1		78.6				5		5		5	
Min		5.2		7.5		5.0			1.5		1.5		1.5				6.3	<u> </u>	14.2		6.3		I		5		5		5	
C.V.		0.74		0.71		0.43			1.34		1.02		0.60				0.51		0.44		0.51		I		0.00		0.00		0.00	

DISSOLVED) META	LS IN BA	SE F	LOW F	or y	ΈAR Τ\	NO																							
Date			Diss	olved Z	inc				Disse	olved	Copper						Diss	solve	ed Iron						Dis	solved	Lead			
	event																													
sample	or			ug/L						ug/L	-							ug/	L							ug/L				
	base																													
collected	flow	11		ection L		-					h Limit 3	<u> </u>					Lab Dete										Limit 2.0			
			DQ	935	DQ	939	DQ	556	DQ 934	DQ	935	DQ	939	DQ	5	556 DQ	934	DQ	935	DQ	939	DQ	556	DQ	934	DQ	935	DQ	939	DQ
		BEFO		AFTER		OUTF		_	BEFO	र	AFTE		OUTF				BEFOR		AFTE		OUTFL				BEFO		AFTER		OUT	
		RE		CDS		LOW		RAIN	E CDS	5	R CDS		LOW		R	AIN	E CDS		R CDS		ow		RAIN		RE		CDS		FLO	
		CDS				-							-					_		_	•				CDS				W	
11/10/2003	В	8.3		9.1		11.5			1.5	U	1.5	U	1.5	U	_		113.0		114.0		107.0				5	U	5	U	5	U
12/3/2003	В	7.9		5.2		5.2			1.5	U	1.5	U	1.5	U	_		47.4		33.6		31.8				5	U	5	U	5	U
12/11/2003	В	34.9		10.9		2.8			9.2		3.8		1.5	U			67.2		48.0		34.3				5	U	5	U	5	U
12/18/2003	В	9.3		10.0		5.2			6.7	1	9.2	1	1.5	U			43.0		51.5		50.2				5	U	5	U	5	U
12/22/2003	В	4.7	1	6.7		2.0			1.5	U	1.5	U	1.5	U			41.1		60.4		55.3				5	U	5	U	5	U
1/22/2004	В	5.8	IN	6.2	IN	13.3	IN		11.2	N	9.0	IN	3.7	IN			40.7	N	30.2	IN	62.9	Ν			5	U	5	UN	5	UN
1/29/2004	В	8.9		12.1		15.4			7.6	1	7.7	1	1.5	U			39.2		34.9	IN	40.1				5	U	5	U	5	U
3/19/2004	В	9.7	Ν	8.3	Ν	9.7	Ν		1.5	UN	3.8	IN	1.5	UN	_		79.8	N	66.6	N	79.8	Ν			5	UN	5	UN	5	UN
4/2/2004	В	18.6	N	26.8	N	42.9	N		9.8	N	8.9	IN	17.0	N	_		116.0	N	109.0	N	42.9	N			5	UN	5	UN	5	UN
4/27/2004	В	12.4	Ν	11.9	Ν	5.2	IN		1.5	UN	1.5	UN		IN	_		108.0	N	108.0	N	41.9	Ν			5	UN	5	UN	5	UN
5/20/2004	В	11.1	Ν	13.5	Ν	7.4	N		1.5	UN	1.5	UN		UN	_		73.4	N	78.0	N	27.1	IN			5	UN	5	UN	5	UN
7/1/2004	B	10.4		10.5		6.4			1.5	U	1.5	U	1.5	U	_		60.7		60.7		35.0				5	<u>U</u>	5	<u>U</u>	5	U
7/7/2004	B	11.6		26.5		10.1			5.0	J	5.0	1	1.5	U	_		60.8		39.5		48.9				5	U	5	U	5	U
9/23/2004	B	22.3		20.6		7.6			25.6		21.1		3.8		_		127.0		78.3		38.8				5	U	5	U	5	U
10/15/2004	В	7.2		5.5	1	6.0			3.9		1.5	U	1.5	U			70.5	_	27.5		167.0			_	5	U	5	U	5	U
															_															
# Samples		15		15		15			15		15		15		_		15		15		15				15		15		15	
Mean		12.2		12.3		10.0			6.0		5.3		3.0		_		72.5		62.7		57.5				5.0		5.0		5.0	
Median		9.7		10.5		7.4			3.9		3.8		1.5		-		67.2		60.4		42.9				5.0		5.0		5.0	
St. Dev.		7.8		7.0		9.8			6.5		5.4	-	4.0				30.2	-	29.4		36.7				0.0		0.0		0.0	
Max		34.9 4.7		26.8 5.2		42.9 2.0			25.6 1.5		21.1 1.5		17.0 1.5		-		127.0 39.2		114.0 27.5		167.0 27.1				5.0 5.0		5.0 5.0		5.0 5.0	
Min C.V.				5.2 0.57		0.98			1.5		1.5	-	1.5				39.2 0.42	-	0.47		0.64						5.0 0.00		0.00	
U.V.		0.64		0.57		0.98			1.08		1.02		1.34				0.42		0.47		0.64				0.00		0.00		0.00	

YEAR THREE		Amn	nonia			Nitrate -	+ Nitrite			Organic I	Vitrogen			Total Ni	itrogen	
			Nitrogen			mg/L as				mg/L as N						
STORM	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
FLOW	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLO W	RAIN	BEFORE	AFTER CDS	OUTFLO W	RAIN	BEFORE CDS	AFTER CDS	OUTFLC W
# Samples	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
Mean	0.189	0.103	0.078	0.069	0.275	0.294	0.330	0.25709	0.14	0.68	0.77	0.64	0.59	1.08	1.17	0.97
Median	0.139	0.089	0.046	0.052	0.231	0.236	0.273	0.2215	0.07	0.54	0.71	0.57	0.52	1.01	1.06	0.90
St. Dev.	0.132	0.093	0.087	0.066	0.159	0.210	0.179	0.1797	0.00	0.40	0.37	0.36	0.30	0.53	0.45	0.42
Max	0.481	0.334	0.370	0.342	0.644	1.130	0.726	0.875	1.30	2.20	1.91	1.96	1.48	2.99	2.39	2.56
Min	0.018	0.003	0.003	0.008	0.084	0.011	0.161	0.04	0.00	0.25	0.21	0.07	0.14	0.39	0.43	0.43
C.V.	0.70	0.91	1.12	0.96	0.58	0.72	0.54	0.69899	0.00	0.58	0.48	0.56	0.51	0.49	0.39	0.44
EFF% (MEAN)			24%	12%			-12%	22%			-12%	16%			-9%	17%
EFF% (MEDIAN)			48%	-13%			-16%	19%			-31%	19%			-5%	15%
	Ortho-Phosphoru				Total Pho					TSS						
	mg/l				m		•			mg/l						
	Lab Detection Limit 0.01 mg/l		Lab	Detection		l ma/l		Lat	D. L. 0.	05						
	556	934	935	939	556	934	935	939		934	935	939				
			AFTER			BEFORE				BEFORE						
	RAIN	E CDS	CDS	ow	RAIN	CDS	CDS	ow		CDS	CDS	ow				
			003	011		000	003	011		003	003	011				
# Samples	34	34	34	34	34	34	34	34		34	34	34				
Mean	0.0059	0.075	0.051	0.057	0.017	0.163	0.159	0.126		35.0	32.2	11.9				
Median	0.0050	0.046	0.044	0.056	0.005	0.131	0.141	0.120		23.8	23.4	8.8				
St. Dev.	0.0037	0.111	0.039	0.035	0.025	0.085	0.088	0.060		41.7	29.2	10.1				
Max	0.0250	0.666	0.196	0.171	0.119	0.345	0.482	0.311		233.0	158.0	52.2				
Min	0.0050	0.020	0.005	0.005	0.005	0.054	0.055	0.005		3.4	4.6	2.4				
C.V.	0.62	1.48	0.76	0.61	1.49	0.52	0.55	0.48		1.19	0.91	0.85				
EFF% (MEAN)			32%	-12%	-		3%	20%			8%	63%				
EFF% (MEDIAN)			4%	-28%			-8%	15%			2%	62%				
			Aluminun	n		Сор	per			Iro	n			Zir	nc	-
	ug/L				ug				ug/	L			ug/	۲L		
				L	ab Detecti	on Limit 3	3.0	La	ab Detectio	n Limit 50	0.0	L	ab Detecti	on Limit 3	30	
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFOR	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTF
		E CDS	CDS	ow	NAIN	CDS	CDS	ow	T AIN	CDS	CDS	ow	NAIN	CDS	CDS	ow
# Samples		34	34	34	34	34	34	34	34	34	34	34	34	34	34	34
Mean		662	643	365	1.97	10.13	11.40	4.94	68	548	509	271	10.4	68.4	74.0	27.7
Median		501	538	245	1.50	8.90	9.41	4.17	59	449	402	221	8.0	59.4	57.8	21.5
St. Dev.		605	533	331	1.00	5.41	6.25	3.70	47	414	362	195	10.1	40.8	49.9	23.4
Max		2960	2750	1550	5.17	22.70	29.10	18.80	231	2190	1990	1120	52.6	212.0	267.0	146.0
Min		104	102	88	1.50	1.50	3.97	1.50	6	74	104	76	2.5	15.4	13.3	6.7
C.V.		0.91	0.83	0.91	0.51	0.53	0.55	0.75	0.69	0.75	0.71	0.72	0.97	0.60	0.67	0.85
EFF% (MEAN)			3%	43%			-13%	57%			7%	47%			-8%	63%
EFF% (MEDIAN)			-7%	54%			-6%	56%			11%	45%			3%	63%

Table E-9. Summary statistics for storm flow for year three. Efficiency is shown as percentages of concentrations. Positive percentage=percent removal; negative percentage=percent increase.

Table E-10. S	Summary	statistics	for	base	flow	for	year	three.	Efficiency	is	shown	as	percentages	of
concentration	ıs.													

YEAR THREE		Amn	nonia			Nitrate -	+ Nitrite			Organic I	Nitrogen			Total N	itrogen	
BASE		ma/L as	Nitrogen			mg/L as	Nitrogen			mg/L as I	-					
FLOW	556	934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
	RAIN	BEFORE	AFTER CDS	OUTFLO W	RAIN	BEFORE	AFTER CDS	OUTFLO W	RAIN	BEFORE	AFTER CDS	OUTFLO W	RAIN	BEFORE	AFTER CDS	OUTFLO W
# Samples		13	13	13		13	13	13		13	13	13		13	13	13
Mean		0.123	0.100	0.095		1.149	1.109	0.240		0.725	0.589	0.686		2.00	1.74	1.02
Median		0.072	0.073	0.056		0.950	0.754	0.080		0.484	0.474	0.633		1.84	1.53	0.95
St. Dev.		0.167	0.098	0.125		0.723	0.672	0.316		0.624	0.447	0.354		0.66	0.86	0.48
Max		0.640	0.364	0.459		2.510	2.500	1.110		2.305	1.942	1.545		3.32	3.30	1.77
Min		0.003	0.003	0.007		0.034	0.287	0.008		0.314	0.000	0.084		1.24	0.21	0.15
C.V.		1.36	0.98	1.32		0.63	0.61	1.32		0.86	0.76	0.52		0.33	0.50	0.47
EFF% (MEAN)			19%	5%			4%	78%			19%	-16%			13%	41%
EFF% (MEDIAN)			-1%	23%			21%	89%			2%	-34%			17%	38%
· · · · ·		Ortho-Ph	osphoru	s		Total Pho	sphorus	5			TSS					
			iq/l			ma					ug/L					
	Lab	Detection	Limit 0.0	1 mg/l	Lab	Detection	Limit 0.01	l mg/l		Lat	D. L. O.	05				
	556	934	935	939	556	934	935	939		934	935	939				
		BEFORE	AFTER	OUTFLO		BEFORE	AFTER	OUTFLO		BEFORE	AFTER	OUTFL				
	RAIN	CDS	CDS	w	RAIN	CDS	CDS	w		CDS	CDS	ow				
# Samples		13	13	13		13	13	13		13	13	13				
Mean		0.067	0.072	0.049		0.144	0.114	0.125		7.1	3.6	8.4				
Median		0.056	0.059	0.038		0.124	0.104	0.110		3.7	3.1	7.2				
St. Dev.		0.036	0.039	0.028		0.101	0.046	0.054		8.4	2.8	6.6				
Max		0.136	0.173	0.096		0.403	0.211	0.280		32.7	12.2	28.4				
Min		0.029	0.034	0.015		0.059	0.067	0.065		1.0	1.1	2.7				
C.V.		0.53	0.54	0.57		0.70	0.40	0.44		1.18	0.79	0.79				
EFF% (MEAN)			-7%	32%			21%	-9%			50%	-135%				
EFF% (MEDIAN)			-5%	36%			16%	-6%			15%	-130%				
· · · · ·			Aluminur	n		Сор	per			Iro	n			Zir	nc	
						ug				ug/				ug/		
					L	ab Detecti	on Limit 3	3.0	La	ab Detectio	n Limit 50	0.0	L	ab Detecti	on Limit 3	30
		934	935	939	556	934	935	939	556	934	935	939	556	934	935	939
		BEFOR	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTFL	RAIN	BEFORE	AFTER	OUTFL
		E CDS	CDS	ow	T.AIN	CDS	CDS	ow	T.AIN	CDS	CDS	ow	NAIN	CDS	CDS	ow
# Samples		13	13	13		13	13	13		13	13	13		13	13	13
Mean		77	59	234		2.41	2.44	2.33		309	238	248		24.8	24.3	16.3
Median		56	44	246		1.50	1.50	1.50		253	239	222		21.0	23.0	13.4
St. Dev.		74	50	131		1.70	1.62	1.60		205	73	130		15.9	8.9	8.0
Max		289	206	467		7.06	6.42	5.73		896	386	596		70.3	46.9	38.6
Min		25	10	50		1.50	1.50	1.50		100	109	117		7.7	13.0	9.9
C.V.		0.96	0.86	0.56		0.70	0.66	0.69		0.66	0.31	0.53		0.64	0.37	0.49
			24%	-300%			-1%	4%			23%	-4%			2%	33%
			21%	-455%			0%	0%			6%	7%			-10%	42%

STORM EVEN	13 FU	IN TEA																								_					<u> </u>
							monia					Nitr	ate	+ Nitrite)				Organ	ic N	litroger	า				Т	otal N	litrogen			
Date Sample				_	mg/		s Nitroge						_					_				_									
Collected STORM	Even	#	556	D	934	D Q	935	D Q	939	DQ	D 556 Q	934	D		D Q 939	D Q	556	D Q	934	D Q	935	D Q	1 1	ວ ຊຸ556	DQ	934	DQ	935	DQ	939	DQ
FLOW YEAR	t		000		BEFO	, a	AFTER	<u> </u>	OUTF	DQ	000 Q	BEFO		AFTE			000		BEFO	S.	AFTE		OUTF	2 000		BEFO	DQ	AFTE	DQ	OUTF	
THREE			RAIN		RE CDS		CDS		LOW		RAIN	RE CDS		R CDS	LOW		RAIN		RE CDS		R CDS		LOW	RAIN		RE CDS		R CDS		LOW	
11/29/2004	Е	1	0.137	D	0.160	D	0.021	D	0.201	D	0.341	1.130		0.283	0.413		0.272		1.700		1.236		1.006	0.75	N	2.99	N	1.54	N	1.62	N
12/16/2004	E	2	0.086	-	0.024	D		D	0.040	D	0.271	0.258		0.226	0.354	_	0.513	-	2.198		1.912		0.606	0.87	N	2.48	N	2.16	N	1.00	N
12/27/2004	E	3	0.018	-	0.010	ID		ID	0.017	D	0.084	0.144		0.166	0.321	_	0.148		0.486		0.727		0.822	0.25	QN	0.64	N	0.90	QN	1.16	QN
1/14/2005	E	4	0.028	D	0.122	D	0.147	D	0.149	D	0.104	0.252		0.307	0.185		0.198		0.786		1.006		0.886	0.33	N	1.16	N	1.46	N	1.22	N
2/28/2005	Е	5	0.113	D	0.016	D	0.013	ID	0.095	D	0.239	0.178		0.196	0.157	•	0.178		0.896		0.921		0.778	0.53	N	1.09	N	1.13	Ν	1.03	N
3/4/2005	Е	6	0.229	D	0.237	D	0.178	D	0.046	D	0.220	0.232		0.278	0.087	·	0.051		0.551		0.584		0.437	0.50	N	1.02	N	1.04	Ν	0.57	N
3/10/2005	E	7	0.097	D	0.212	D	0.093	D	0.020	D	0.128	0.011		0.163	0.040	1	0.115		0.777		0.684		0.570	0.34	N	1.00	N	0.94	Ν	0.63	N
3/17/2005	Е	8	0.196	D	0.038	D	0.055	D	0.043	D	0.150	0.219		0.196	0.113		0.244		1.153		0.789		0.594	0.59	N	1.41	N	1.04	Ν	0.75	Ν
4/4/2005	E	9	0.150	D	0.103	D	0.032	D	0.030	QD	0.086	0.349		0.267	0.055		0.454		0.938		1.341		1.085	0.69	N	1.39	N	1.64	Ν	1.17	Ν
4/13/2005	Е	10	0.430	-	0.304	D	0.144	D	0.093	D	0.277	0.363		0.374	0.495	_	0.263		0.873		0.712		0.632	0.97	N	1.54	N	1.23	Ν	1.22	N
4/25/2005	Е	11	0.217	_	0.334	D	0.300	D	0.064	D	0.282	0.488		0.583	0.246	_		_	0.998		1.507		0.480	0.49	NJ	1.82	N	2.39	Ν	0.79	N
4/27/2005	E	12	0.481	-	0.327	D	0.370		0.113	D	0.323	0.366		0.440	0.360	_		_	0.327		0.410		0.307	0.72	NJ	1.02	N	1.22	N	0.78	N
5/2/2005	E	13	0.296	-	0.088	D			0.072	D	0.297	0.216		0.328	0.169	_		J6	0.536		0.873		0.659	0.56	NJ	0.84	N	1.34	Ν	0.90	N
5/18/2005	E	14	0.382	-	0.207	D			0.140		0.644	0.548		0.710	0.516	_	0.064		0.775		1.292		1.204	1.09	N	1.53	N	2.20	N	1.86	N
5/31/2005	E	15	0.114	-	0.114	D		D	0.342		0.170	0.239		0.300	0.259	_	0.076		0.737		1.198		1.959	0.36	N	1.09	N	1.67	N	2.56	N
6/2/2005	E	16	0.075	-	0.014	ID		ID	0.050		0.122	0.144		0.201	0.240		0.003		0.712		0.213		0.310	0.20	N	0.87	N	0.43	N	0.60	N
6/4/2005	E	17	0.277	-	0.108	D	0.097	D	0.069	D	0.181	0.139		0.168	0.075	_		_	0.533		0.815		0.576	0.42	NJ	0.78	N	1.08	N	0.72	N
6/5/2005	E	18	0.410	-	0.109	D			0.069	D	0.223	0.147		0.161	0.078	_			0.524		0.733		0.523	0.43	-	0.78	N	0.99	N	0.67	N
6/6/2005	E	19	0.406	-	0.109	D			0.071		0.224	0.140		0.177	0.216	_		J6	0.521		0.725		0.333	0.40	NJ	0.77	N	1.00	N	0.62	N
6/10/2005	Е	20	0.076	-	0.030	D	0.023	D	0.026		0.172	0.179		0.202	0.201	_	0.042		0.341		0.415		0.473	0.29	N	0.55	N	0.64	N	0.70	N
6/11/2005	E	21	0.084	-	0.039	D			0.058		0.121	0.101	-	0.226	0.058	_	0.085	_	0.250		0.308		0.314	0.29	N	0.39	N	0.61	N	0.43	N
6/13/2005	E	22	0.077	-	0.016	D	0.071		0.066	D	0.122	0.099		0.195	0.059	_	0.031	_	0.425		0.414		0.415	0.23	N	0.54	N	0.68	N	0.54	N
6/24/2005	E	23	0.403	-		QD					0.596 Q	0.354	Q		Q 0.187	_	0.131	_	0.755		0.936		1.302	1.13	N	1.25	N	1.46	N	1.50	N
7/11/2005	E	24		-		-			0.140	D	0.143	0.107	-	0.167	0.151	_	1.303	_	0.951		0.771		0.569	1.48	N1	1.06	N1	0.94	N1	0.86	N1
7/13/2005	E	25	0.108	-	0.050	D					0.216	0.214	-	0.221	0.109	_	0.066	_	0.656		0.697		0.589	0.39	N1	0.92	N1	0.94	N1	0.73	N1
7/14/2005	E	26	0.135	-	0.024	D			0.030		0.479	0.366	-	0.374	0.384	_	0.156	_	0.420		0.584		0.536	0.77	N1	0.81	N1	0.96	N1	0.95	N1
7/25/2005	E	27	0.325	-	0.063	D		ID	0.031		0.436	0.279	-	0.322	0.220	_	0.109	-	0.518	$ \rightarrow $	0.552	-	0.909	0.87	N1	0.86	N1	0.89	N1	1.16	N1
7/30/2005	E	28	0.229	-	0.083	D		D	0.071	D	0.487	0.573	-	0.674	0.223	_	0.084	-	0.644		0.710		0.746	0.80	QN N1	1.30		1.40	QN N1	1.04	QN N1
8/2/2005	E	29	0.181	-	0.089	D	0.047		0.054	D	0.530	0.534	-	0.571	0.554	_	0.059	-	0.467		0.502		0.372	0.77	N1	1.09	N1	1.12	N1	0.98	N1
8/6/2005	E	30	0.124	-	0.061	D		D	0.014	ID	0.521	0.573	-	0.721	0.875	_	0.065	10	0.396		0.574	-	0.071	0.71	N1	1.03	N1	1.34	N1	0.96	N1
8/22/2005	E	31	0.130 0.218	-	0.138	D D		ID D	0.008	ID D	0.332 0.480	0.320	-	0.441	0.358	_	0.000	10	0.312		0.497	-	0.684	0.44	J6 N1	0.77	N1 N1	0.95	N1 N1	1.05 0.90	N1 N1
8/23/2005		32	0.218	-	0.109	U	0.021	U	0.036	ID	0.480	0.427	-	0.726	0.473	_	0.062	-	0.294		0.423	-	0.391	0.76	N1	0.83	N1	0.85	N1	0.90	N1 N1
8/24/2005 8/29/2005	E	33 34	-	-			0.003				0.237	0.189	-	0.188	0.263	_	0.022	-	0.479	\vdash	0.660		0.459	0.40	_	0.67	N1	0.85	N1	0.73	N1 N1
0/29/2005		34	0.020		0.005	0	0.005		0.033		0.104	0.107		0.221	0.247		0.010		0.321		0.307		0.320	0.14	INI	0.43	INT	0.55		0.00	
# Samples			34	+	34		34	$\left - \right $	34		34	34	-	34	34	_	34	-	34		34		34	34		34		34		34	
Mean			0.189	\uparrow	0.103		0.078		0.069		0.275	0.294		0.330	0.257	·	0.14		0.68		0.77		0.64	0.59		1.08		1.17		0.97	
Median			0.139	+	0.089		0.046		0.052		0.231	0.236		0.273	0.222	_	0.07		0.54		0.71		0.57	0.52	1	1.01		1.06		0.90	
St. Dev.			0.132	\uparrow	0.093		0.087		0.066		0.159	0.210		0.179	0.18		0.00		0.40		0.37		0.36	0.30		0.53		0.45		0.42	
Max			0.481	+	0.334		0.370		0.342		0.644	1.130		0.726	0.875		1.30		2.20		1.91		1.96	1.48	1	2.99		2.39		2.56	
Min			0.018	+	0.003		0.003		0.008		0.084	0.011		0.161	0.04		0.00		0.25		0.21		0.07	0.14	1	0.39		0.43		0.43	
C.V.			0.70	+	0.91		1.12		0.96		0.58	0.72		0.54	0.699	1	0.00		0.58		0.48		0.56	0.51	1	0.49		0.39		0.44	
				-																				1	1						

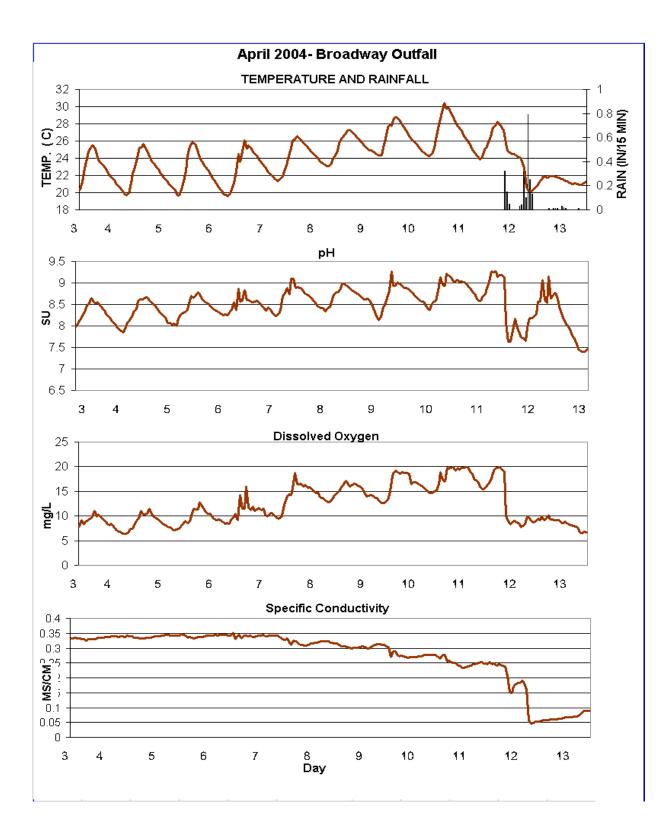
						Δmi	monia						Nitra	ate	+ Nitrit	ρ					Organ	ic N	litroger	۱				Т	otal N	litrogen			
Date sample							s Nitroge	en													C. gui							-					
collected BASE FLOW YEAR THREE	flow	event #	556 RAIN	D Q	934 BEFO RE CDS		935 AFTER CDS	D Q	OUTF LOW		556 RAIN	D Q	BEFO RE CDS	D Q	935 AFTE R CDS	D Q	939 OUTF LOW	D Q	556 RAIN	D Q	934 BEFO RE CDS	D Q	935 AFTE R CDS	D Q	LOW	556 RAIN	DQ	934 BEFO RE CDS	DQ	935 AFTE R CDS	DQ	939 OUTF LOW	
11/15/2004	В	1			0.203				0.459	D			1.280		1.280		0.350				1.837		1.942		0.961 J			3.32	N	3.30	N	1.77	N
11/24/2004	В	2			0.046		0.026		0.156				2.510		2.500		0.266				0.484		0.474		0.838			3.04	N	3.00	N	1.26	N
12/9/2004	В	3			0.076				0.214	D			2.020		1.840		0.263				0.314		0.523		0.633			2.41	N	2.41	N	1.11	N
1/12/2005	B	4			0.070					D			1.330		1.270		0.056				0.330		0.401		0.738			1.73	N	1.72	N	0.85	N
2/14/2005	B	5			0.640		0.125			D			0.432		0.688		0.030				0.408		0.367		0.592			1.48	N	1.18	N	0.65	N
2/25/2005	B	6			0.072		0.082			D			0.652		0.705	-	0.072				0.636		0.733	-	0.731			1.36	N	1.52	N	0.87	N
3/3/2005	B	7 8			0.010		0.011			D			0.468		0.287		0.080				0.762		0.532	-	0.292			1.24	N N	0.83	N	0.46	N
4/7/2005 4/18/2005	B	8 9			0.150	_			0.022	D ID			0.860		0.754	-	0.025				0.460			16	0.903			1.47	N	0.21	J6	0.95	N
5/16/2005	B	10			0.140	-	0.179			ID			0.330		0.335		0.0047	1			0.742		0.584	50	1.545			1.45	N	1.17	N	1.56	N
6/22/2005	В	11			0.011				0.082	D			0.034		0.697		1.110	•			2.305		0.764		0.568			2.35	N	1.53	N	1.76	N
8/5/2005	В	12			0.055			_		D			1.550		1.430		0.181				0.315		0.417		0.587			1.92	N	1.92	N	0.79	N
9/20/2005	В	13			0.003		0.003			ID			2.020		1.960		0.633				0.318		0.458		0.442			2.34	Ν	2.42	N	1.09	N
# Samples					13		13		13				13		13		13				13		13		13			13		13		13	
Mean					0.123		0.100		0.095				1.149		1.109		0.240				0.725		0.589		0.686			2.00		1.74		1.02	
Median					0.072		0.073		0.056				0.950		0.754		0.080				0.484		0.474		0.633			1.84		1.53		0.95	
St. Dev.					0.167		0.098		0.125				0.723		0.672		0.316				0.624		0.447		0.354			0.66		0.86		0.48	
Max					0.640		0.364		0.459				2.510		2.500		1.110				2.305		1.942		1.545			3.32		3.30		1.77	<u> </u>
Min					0.003		0.003		0.007				0.034		0.287		0.008				0.314		0.000		0.084			1.24		0.21		0.15	<u> </u>
C.V.					1.36		0.98		1.32				0.63		0.61		1.32				0.86		0.76	-	0.52			0.33		0.50		0.47	-
																																	\vdash

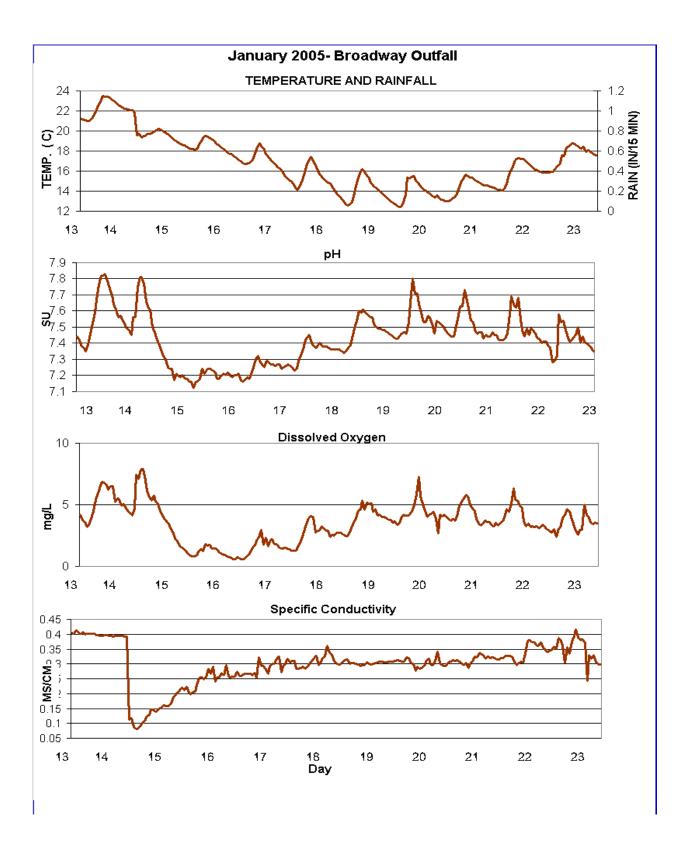
			THREE	-									.			-					TOC			_
					Ortho-Ph								Total P								TSS			
				MG/L	Lab Dete	ectio	on Limit	0.0	1			MG/L	Lab De	etec	tion Limi	it O.	01		uç	g/L	Lab D.	_	0.05	
Date Sample			556	DQ	934	D Q	935	D Q	939	D Q	556	DQ	934	D Q	935	D Q	939	DQ	934.0	D Q	935	D Q	939	D Q
Collected	Even t	#	RAIN		BEFO RE CDS		AFTE R CDS		OUTF LOW		RAIN		BEFO RE CDS		AFTE R CDS		OUTF LOW		BEFO RE CDS		AFTE R CDS		OUTF LOW	
11/29/2004	E	1	0.005	U	0.021	Ι	0.065		0.090		0.020		0.343		0.189		0.152		233.0		24.2		9.6	
12/16/2004	E	2	0.005	U	0.042		0.020	I	0.058		0.034		0.340		0.269		0.088		120.0		158.0		7.3	
12/27/2004	E	3	0.005	U	0.044		0.043		0.042		0.005	U	0.152		0.099		0.061		21.9		20.5		4.8	
1/14/2005	E	4	0.011	1	0.081		0.071		0.051		0.022	I	0.255		0.252		0.150		24.5		39.2		12.3	
2/28/2005	E	5	0.005	U	0.048		0.043		0.046		0.033		0.263	J	0.197	J	0.150	J	49.6	J	46.4	J	10.6	J
3/4/2005	E	6	0.005	U	0.040		0.043		0.053		0.011	I	0.197		0.149		0.110		22.8		23.0		5.8	
3/10/2005	E	7	0.005	U	0.089		0.063		0.027	T	0.005	U	0.219		0.150		0.107		15.0		20.1		6.6	
3/17/2005	E	8	0.005	U	0.666		0.005	υ	0.005	υ	0.005	U	0.181		0.135		0.082		33.3		32.7		9.1	1
4/4/2005	E	9	0.005	U	0.077		0.064		0.058		0.010	QI	0.251	Q	0.328	Q	0.176	Q	25.5		42.1		11.2	
4/13/2005	E	10	0.005	U	0.160		0.109		0.117		0.019	I	0.304		0.167		0.229		17.3		4.7		8.0	
4/25/2005	E	11	0.005	U	0.188		0.196		0.171		0.011	I	0.345		0.482		0.245		40.2		52.0		5.4	
4/27/2005	E	12	0.005	U	0.053		0.050		0.137		0.005	U	0.121		0.140		0.202		28.9		25.1		8.5	-
5/2/2005	E	13	0.005	U	0.041		0.034		0.063		0.005	UQ	0.088	Q	0.148	Q	0.128	Q	14.5		12.4		5.2	
5/18/2005	E	14	0.025	1	0.099		0.092		0.078		0.032		0.206		0.276		0.201		32.0		62.5		35.0	
5/31/2005	E	15	0.011	1	0.125		0.144		0.071		0.015	I	0.217		0.275		0.311		50.7		60.9		52.2	
6/2/2005	E	16	0.005	U	0.039		0.043		0.066		0.005	U	0.177		0.160		0.152		33.4		67.0		19.0	
6/4/2005	E	17	0.005	U	0.051		0.052		0.071		0.005	U	0.111		0.141		0.116		16.9		9.7		5.6	
6/5/2005	E	18	0.005	U	0.049		0.051		0.070		0.005	U	0.110		0.130		0.119		11.8		10.6		7.2	
6/6/2005	E	19	0.005	U	0.050		0.052		0.072		0.005	U	0.133		0.161		0.120		12.7		12.8		7.4	
6/10/2005	E	20	0.005	U	0.025	T	0.030	T	0.052		0.098		0.102		0.095		0.130		16.4		21.0		9.9	\square
6/11/2005	E	21	0.005	U	0.032	T	0.044		0.060		0.005	U	0.070		0.075		0.093		3.4		4.6		2.5	\square
6/13/2005	E	22	0.005	Ŭ	0.040	<u> </u>	0.051		0.066		0.005	Ū	0.106		0.104		0.112		28.6		19.3		6.4	1
6/24/2005	E	23	0.005	U	0.047		0.030		0.025		0.005	1	0.111		0.099		0.125		24.6		17.5		21.2	\square
7/11/2005	E	24	0.005	U	0.020	T	0.005	υ			0.119		0.084		0.090		0.005	U	31.1		16.2		12.5	1
7/13/2005	E	25	0.005	Ŭ	0.086	<u> </u>	0.079	-	0.065		0.005	U	0.190		0.147		0.120		34.4		32.5		13.6	1
7/14/2005	E	26	0.005	Ŭ	0.049		0.044		0.043		0.005	Ū	0.084		0.089		0.120		23.0		24.8		27.7	1
7/25/2005	E	27	0.005	Ŭ	0.035		0.025		0.068		0.005	Ŭ	0.162		0.208		0.142		92.5		86.3		24.0	1
7/30/2005	E	28	0.005	Ŭ	0.029		0.016		0.029	T	0.005	Ū	0.128		0.099		0.104		36.5		30.0		8.4	1
8/2/2005	E	29	0.005	Ŭ	0.033		0.029	T	0.013		0.021		0.094		0.087		0.069		22.7		25.3		9.1	1
8/6/2005	E	30	0.005	Ŭ	0.039		0.020	Ì	0.027	Ì	0.019	1	0.087		0.098		0.054		17.9		23.4		4.1	1
8/22/2005	E	31	0.005	Ŭ	0.059		0.045	-	0.030	Ì	0.005	U	0.089		0.123		0.115		9.2		23.3		14.9	1
8/23/2005	E	32	0.005	U	0.032	Т	0.023	Т	0.024	i	0.005	U	0.054		0.074		0.067		3.8		7.1		5.7	1
8/24/2005	E	33	0.005	U	0.038	<u> </u>	0.028	i	0.031		0.012	I	0.103		0.104		0.093		21.6	<u> </u>	21.4		12.4	1
8/29/2005	E	34	0.005	U	0.024	I	0.013	I			0.005	U	0.061		0.055		0.048		20.9		16.5		2.4	F
			24		24		24		24		24		0.4		24		24		24		24		24	F
# Samples			34	-	34		34		34		34		34		34		34		34		34		34	-
Mean			0.0059	-	0.075		0.051		0.057		0.017		0.163		0.159		0.126		35.0		32.2		11.9	-
Median			0.0050		0.046	-	0.044	-	0.056	-	0.005		0.131		0.141		0.120		23.8	-	23.4		8.8	
St. Dev.			0.0037		0.111	-	0.039	-	0.035	-	0.025		0.085		0.088		0.060		41.7	-	29.2		10.1	-
Max			0.0250		0.666	-	0.196		0.171		0.119		0.345		0.482		0.311		233.0		158.0		52.2	-
Min			0.0050		0.020	<u> </u>	0.005	<u> </u>	0.005	<u> </u>	0.005		0.054		0.055		0.005		3.4	<u> </u>	4.6		2.4	
C.V.			0.62		1.48		0.76		0.61		1.49		0.52		0.55		0.48		1.19		0.91		0.85	

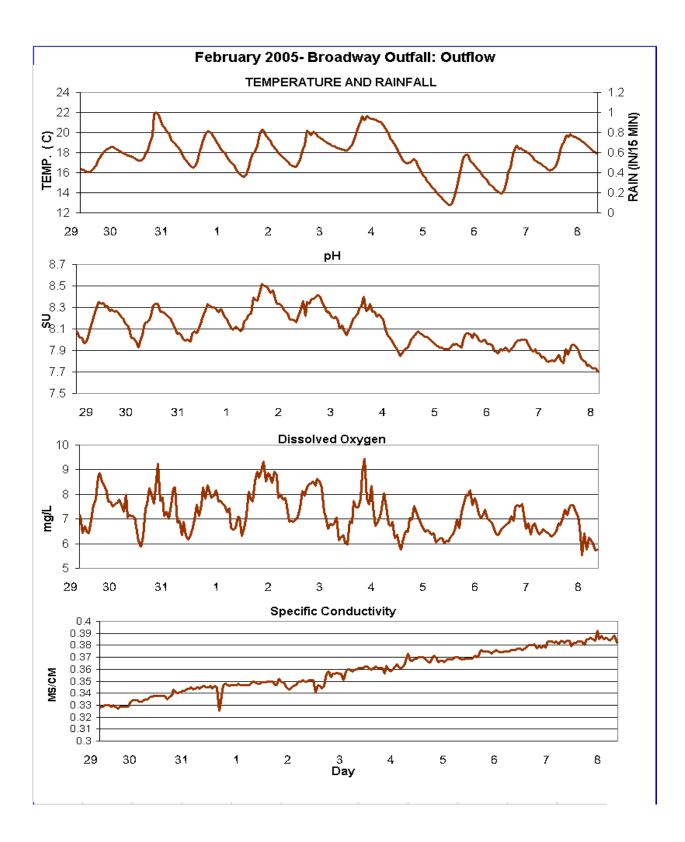
Date				Ort	tho-Pho	sph	orus					Total Phosphorus									TSS			
sample	base	event #			MC					MG/L							ug/L							
collected	flow			Lab	Detectio	on L	imit 0.01					La	ab Detec	tion	Limit 0.	01				La	b D. L. ().05	5	
						D		D		D				D		D				D		D		
			556	DQ	934	Q	935	Q	939	Q	556	DQ	934	Q	935	Q	939	DQ	934.0	Q	935	Q		(
			RAIN		BEFO RE CDS		AFTE R CDS		OUTF LOW		RAIN		BEFO RE CDS		AFTE R CDS		OUTF LOW		BEFO RE CDS		AFTE R CDS		OUTF LOW	
11/15/2004	В	1			0.075		0.062		0.062				0.089	J	0.088	J	0.125	J	7.8	J	12.2	J	9.9	J
11/24/2004	В	2			0.056		0.053		0.033				0.089	J	0.092	J	0.090	J	3.7	J	2.7	J	7.6	J
12/9/2004	В	3			0.053		0.056		0.096				0.059		0.070		0.122		4.0		4.0		6.2	
1/12/2005	В	4			0.029	1	0.034		0.029	Ι			0.060		0.067		0.105		3.3		2.3		9.3	
2/14/2005	В	5			0.060		0.048		0.015				0.204		0.104		0.065		7.2		1.1		3.2	
2/25/2004	В	6			0.040		0.059		0.035				0.124	J	0.146	J	0.102	J	3.6	J	4.8	J	9.7	
3/3/2005	В	7			0.128		0.076		0.070				0.274		0.132		0.109		13.6		3.1		3.7	
4/7/2005	В	8			0.078		0.084		0.076				0.125		0.109		0.168		7.3		1.8		7.2	
4/18/2005	В	9			0.136		0.173		0.091				0.166		0.211		0.146		2.1		2.3		4.1	
5/16/2005	В	10			0.105		0.131		0.038				0.147		0.188		0.280		3.0		3.3		28.4	
6/22/2005	В	11			0.036		0.068		0.050				0.403		0.126		0.110		32.7		3.4		2.7	
8/5/2005	В	12			0.045		0.052		0.015				0.064		0.076		0.070		1.0		1.4		6.3	
9/20/2005	В	13			0.034		0.042		0.024	Ι			0.064		0.074		0.131		2.8		3.9		10.7	╞
# Samples					13		13		13				13		13		13		13		13		13	
Mean					0.067		0.072		0.049				0.144		0.114		0.125		7.1		3.6		8.4	
Median					0.056		0.059		0.038				0.124		0.104		0.110		3.7		3.1		7.2	
St. Dev.					0.036		0.039		0.028				0.101		0.046		0.054		8.4		2.8		6.6	
Max					0.136		0.173		0.096				0.403		0.211		0.280		32.7		12.2		28.4	
Min					0.029		0.034		0.015				0.059		0.067		0.065		1.0		1.1		2.7	
C.V.					0.53		0.54		0.57				0.70		0.40		0.44		1.18		0.79		0.79	
																								┢

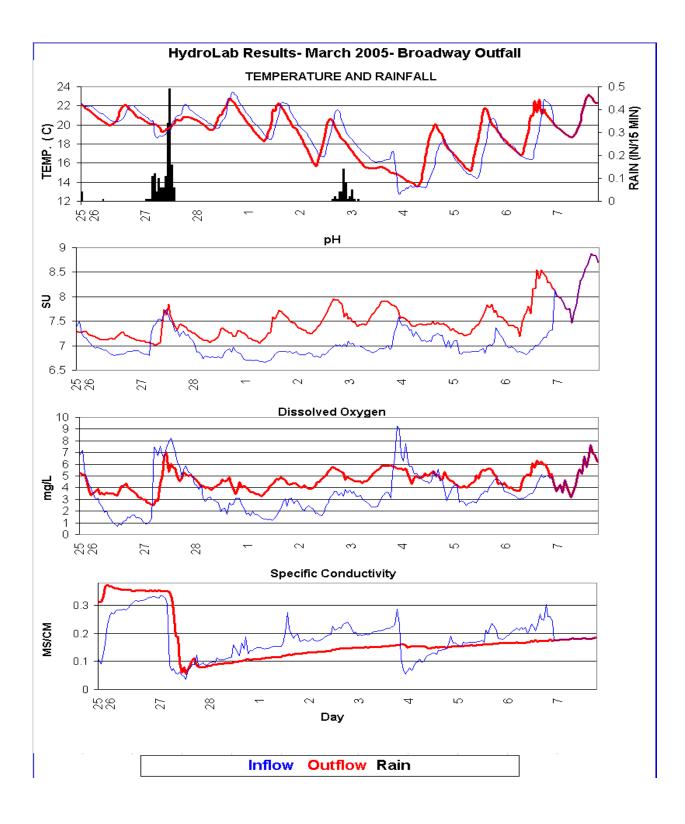
STORM EVEN	NTS YE	AR	THREE							CDS UNI	ΤС	LEANED	OU	T 4/20/05																	T				
Date	Aluminum							Copper											Iro	n							Zine	с							
sample	event	#								g/L				Ľ			ug/L																		
ty collected	type								Lab Detection Limit 3.0								Lab Detection Limit 50.0									Lab Detection Limit 30									
tenetica				D	D)	D		D	200 200	D		D		D		D		D		D		D		D	200 20	D		D		D				
			934	Q 935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	Q	556	Q	934	Q	935	Q	939	G				
			BEFORE	AFTER	2	OUTFLO		RAIN		BEFORE		AFTER		OUTFL		RAIN		BEFORE		AFTER		OUTFL		RAIN		BEFORE		AFTER	(OUTFLO	· 🗌				
			CDS	CDS		w				CDS		CDS		ow				CDS		CDS		ow				CDS		CDS		w	_				
11/29/2004	E	1	2490	714		206		1.50	U	15.50		13.60		4.65	Ι	89.3		2190		839		184		9.0		130.0		164.0		35.1	_				
12/16/2004	E	2	1470	1960		257		1.50	U	20.60		23.90		1.50	U	154.0	J	1620	J		J	262	J	9.3		212.0		267.0		16.2	_				
12/27/2004	E	3	419	253	_	166		1.50	U	6.54	1	3.97	Ι	1.50	U	59.1		647		292		180		3.7	1	86.5		54.5		11.2	_				
1/14/2005	E	4	416	542	_	291		1.50	U	9.61		10.30		3.22	1	67.8		433		558		261		5.5	1	92.9		110.0		21.2	_				
2/28/2005	E	5	599	594		240		3.16	1	12.10		11.80		4.37	1	68.2		845		678		273		7.8	-	144.0		119.0		35.6	_				
3/4/2005	E	6	335	331	_	198		1.50	U	6.67	1	6.61		1.50	U	24.0	1	617		343	-	160		4.1	1	94.6		80.8		16.2	-				
3/10/2005	E	7	224	303	_	165		1.50	U	4.74	1	7.21		3.11	1	32.6	1	697	\square	331	-	194		3.2	1	58.7	+	79.5		24.6	+				
3/17/2005	E	8 9	642	410	_	237 172		1.50	U	15.70	-	13.00	\square	9.27		54.0 6.3	U	622	\square	418	-	205		5.4 52.6	Ι	101.0	+	68.4		29.9	+				
4/4/2005	_	-	538	660	_			5.17 1.50		10.00	-	12.80		3.45	1		U			749	-	203	_			95.3		121.0		24.2	+-				
4/13/2005 4/25/2005	E	10 11	471 696	102 961		183 147		1.50	U U	19.70 9.69	-	5.17 15.30	-	5.82 3.13	-	81.3 65.4	-	465 623		199 205	-	223 205		34.6 30.3	\vdash	82.0 97.4	+	41.3 142.0		30.6 18.5	+				
4/23/2003	E	12	435	489	-	238		1.50	U	7.07	1	8.34		1.50	U	52.5	-	358		414	-	203	-	14.0		61.3		70.1		23.8					
5/2/2005	E	12	216	227		168		1.50	U	4.20	÷	5.85	÷	1.50	U	23.4	T.	191		215	-	162		14.0		60.1		59.2		23.6	+				
5/18/2005	E	14	658	971		971	-	4.55	I	17.50	-	18.50	1	10.10	0	95.5	-	584		945	-	637		17.4		94.2	+ +	129.0		62.6	+-				
5/31/2005	E	15	568	897		1550		1.50	U	11.80		17.90		18.80		49.3	J	527	J	867	J	1120		7.5		66.8		99.9		146.0	+				
6/2/2005	E	16	638	972		530		3.56	ī	22.70	-	29.10		12.00		150.0		623	5	808		367		6.3		57.1		90.8		34.1	+-				
6/4/2005	E	17	507	810		269		3.32	i	15.50	-	18.40		8.20	Т	85.6	-	393		648	-	248		9.8	· ·	36.6		53.5		21.8	+				
6/5/2005	E	18	477	806		269		3.40	i	14.50		18.30		8.49	i	231.0		380		644	-	246		11.9		34.9		54.4		21.0	+				
6/6/2005		19	513	807		249		3.43	1	14.50		18.80		7.71	I	87.7		397		651	-	230		9.5		36.3		56.4		20.1	+				
6/10/2005	E	20	288	239		261		1.50	U	7.00	1	6.57		4.66	I	31.1	T	213		181		193		4.2	1	32.1		29.8		18.3	-				
6/11/2005		21	164	128		94.9		1.50	Ū	5.89	İ	6.60	İ	1.50	U	6.3	U	113		104		83.2		4.2	Ť	26.0		22.0		12.1	-				
6/13/2005	E	22	494	209		141		1.50	U	16.70		9.60		3.16	I	30.3	Ť	478		221		141		5.2	1	78.8		34.5		16.2	T				
6/24/2005	E	23	440	249		396		1.50	U	6.20	1	8.88	Τ	5.43	Ι	79.8		358		331		410		8.3		54.7		54.0		41.2	1				
7/11/2005	E	24	360	267		279		1.50	U	5.36	1	5.09	1	1.50	U	45.0		295		230		219		5.7		47.5		38.3		20.7	1				
7/13/2005	E	25	1260	1170		644		1.50	U	10.50		9.22		4.02	Ι	59.4		678		679		348		6.7		43.6		42.2		20.5	T				
7/14/2005	E	26	658	665		1270		1.50	U	4.39	1	4.76	1	6.72	Т	94.2		363		364		636		5.8		32.5		32.5		41.7					
7/25/2005	E	27	2960	2750		788		1.50	U	9.86	1	8.29	Τ	1.50	U	55.6		1100		1010		326		11.1		103.0		94.9		21.8					
7/30/2005	E	28	1300	975		241		1.50	U	8.08	1	7.44		1.50	U	70.8		714		575		163		8.7		79.3		73.8		12.8					
8/2/2005	E	29	585	615		579		1.50	U	7.96	1	7.75	1	4.91	Ι	121.0		354		389		307		9.3		49.0		46.8		30.5					
8/6/2005	E	30	599	533		276		1.50	U	5.07	1	22.80		3.60	Ι	124.0		330		427		181		11.2		43.6		62.2		23.2	_				
8/22/2005		31	264	342		241		1.50	U	4.63	1	9.60		4.31	Ι	25.5	_	231		275		164		6.3		22.4		43.9		19.0	_				
8/23/2005	_	32	104	154		143		1.50	U	1.50	U			5.80	Ι	48.8	-	74		166	-	102		8.2		15.4		33.0		19.6	_				
8/24/2005	E	33	422	493		447		1.50	U	8.19	1	7.84		6.12	1	24.5	1	247		343	_	235		2.5	1	22.3		33.5		21.1	_				
8/29/2005	E	34	287	268	-	87.9		1.50	U	4.36	1	4.74	1	3.35	1	20.3	1	226		228	-	75.7		3.7	1	34.5	\square	13.3		6.7	+				
# Samples			34	34		34		34		34		34		34		34		34		34		34		34		34		34		34					
Mean			662	643	_	365		1.97		10.13		11.40		4.94		68	-	548	\square	509	-	271		10.4		68.4		74.0		27.7	_				
Median			501	538		245		1.50		8.90		9.41		4.17		59	-	449		402	-	221		8.0		59.4		57.8		21.5	_				
St. Dev.			605	533	_	331		1.00		5.41		6.25		3.70		47	-	414		362	-	195		10.1		40.8		49.9		23.4	_				
Max			2960	2750	_	1550		5.17	\square	22.70	_	29.10	\square	18.80		231	-	2190		1990	-	1120		52.6	\square	212.0	+	267.0		146.0	+				
Min			104	102		88		1.50	\square	1.50	_	3.97		1.50		6	-	74		104	-	76		2.5		15.4		13.3		6.7	_				
C.V.			0.91	0.83		0.91		0.51		0.53		0.55		0.75		0.69	-	0.75		0.71	-	0.72		0.97	\square	0.60	+	0.67		0.85	-				

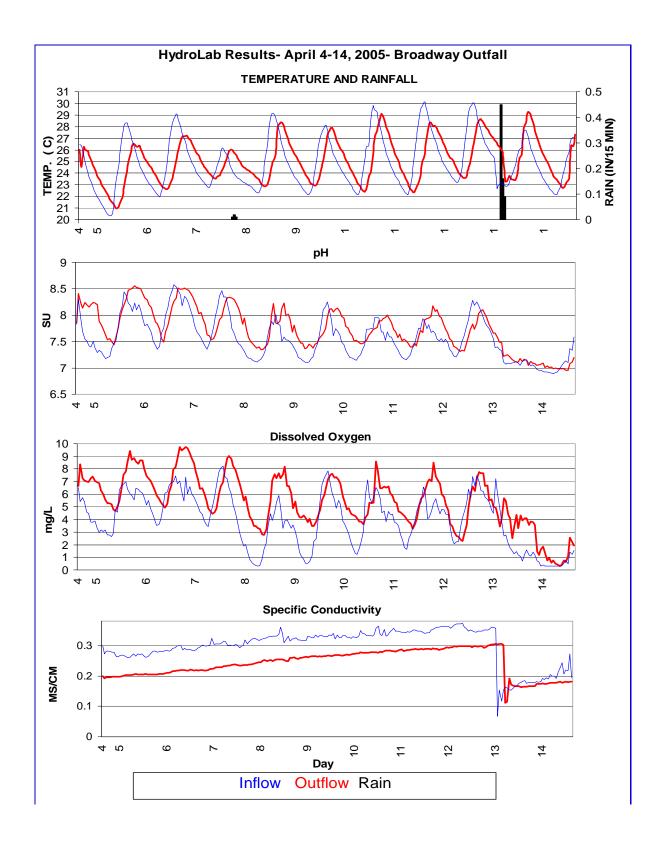
DISSOLVED N	/ETAL	S IN STORM	FLOW FO	OR YEAR	Т	HREE																	
Date		Diss	olved Zind	;		Dis	solv	/ed Cop	pe	r		Di	isse	olved Ir	on				Diss	olved L	ead		
	event																						
sample	or		ug/L					ug/L						ug/L						ug/L			
	base																						
collected	flow	Lab Dete	ection Limi	it 15		Lab D	ete	ction Lir	nit	3.0		Lab De	eteo	ction Lin	nit	50.0		Lab	Det	ection Li	mit 2	2.0	
		934	935	939		934		935		939		934		935		939		934		935		939	
STORM		l D	D		, I		D		D		5		D		D		D						D
FLOW YEAR		BEFORE	AFTER Q		2 !		Q	AFTER	Q		٦Ľ		Q	AFTER	Q	OUTFLO	Q	BEFORE	DQ	AFTER	DQ	OUTFLO	Q
THREE		CDS	CDS	ow	Ľ	CDS		CDS		w	Ľ	CDS		CDS		w		CDS		CDS		w	
					_						_												
11/29/2004	E	37.8	61	26.5	_	3.35	1	5.27	1	3.42	I	292		59.8		35	1	5	U	5	U	5	U
12/16/2004	E	49.8	49.2	8.87		6.38	1	4.3	1		U	66.7		72.1		71.8		5	U	5	U	5	U
12/27/2004	E	19.3	19.9		I	1.5	U	1.5	U		U	35.1	Т	24.4	1	77.3		5	U	5	U	5	U
1/14/2005	E	45.2	43.4	12.9		4.41	1	4.14	1		U	44.2		56.9		81.8		5	U	5	U	5	U
2/28/2005	E	29.4	31.5	22.7	_	1.5	U	1.5	U		U	39.7	1	31.3	1	30.5	1	5	U	5	U	5	U
3/4/2005	E	36.6	36.8	10.9		1.5	U	1.5	U		U	196		42		50.1		5	U	5	U	5	U
3/10/2005	E	31.6	39.3	18.5	_	1.5	U	1.5	U		U	375		45.6		51.1	_	5	U	5	U	5	U
3/17/2005	Е	25.8	23	01.0	I	5.23	1	6.14	1	5.66	I	31.4	1	37.4		37.5	1	5	U	5	U	5	U
4/4/2005	E	25.1	40.2	14.7		1.5	U	1.5	U		U	69.6		55.4		44.8		5	U	5	U	5	U
4/13/2005	E	35.8	37.4	23.6	_	1.5	U	3.83	1	3.59	L	21.1	1	122		66.2		5	U	5	U	5	U
4/25/2005	Е	35.7	46.2		J	3.17	1	3.42	1		U	25.3	1	40.4		104		5	U	5	U	5	U
4/27/2005	Е	27.4	31.6	17.5		3.25	1	1.5	U		U	30.2	1	36.2	1	92.2		5	U	5	U	5	U
5/2/2005	Е	28.1	37.7	18		4.62	1	1.5	U		U	14.7	1	29.7	1	46.4		5	U	5	U	5	U
5/18/2005	E	28.5	33.2	18.4		4.11	1	3.68	1	1.5 I	U	25.4	1	43.9		52.7		5	U	5	U	5	U
5/31/2005	E	22	26.1	24.6		3.59	1	3.11	1	<i>1.</i> 5 I	U	26.9	1	35.1	L	66.3		5	U	5	U	5	U
6/2/2005	E	14.5	14.4	13.2		9.68		8.42	1	4.84	L	28.8	1	22.7	1	32.8	Т	5	U	5	U	5	U
6/4/2005	Е	10.2	10.8	9.6		5.73	1	5.34	1	4.6	L	20.8	1	22.5	1	49.9		5	U	5	U	5	U
6/5/2005	Е	10.1	10.6	10.1		5.04	Т	5.02	1	4.52	I	21.8		23	1	48.1		5	U	5	U	5	U
6/6/2005	E	10.1	10.7	9.01		4.78	1	4.8	1	4.3	L	21	1	28.9	Ι	52		5	U	5	U	5	U
6/10/2005	E	13.8	14	9.71		3.46	Τ	3.68	1	1.5 I	U	15.3	1	24.2	1	27.2	Т	5	U	5	U	5	U
6/11/2005	Е	13.4	14.7	9.17		1.5	U	3.5	1		U	14	1	40.1		33.1	Т	5	U	5	U	5	U
6/13/2005	Е	135	14.9	9.13		1.5	U	3.3	T		U	14.4		37.8	1	34.6	Т	5	U	5	U	5	U
6/24/2005	E	16.8	27.5	15.3		3.27	Ι	4.8	1	1.5 I	U	25.8	1	107		55.1		5	U	5	U	5	U
											T												
# Samples		23	23	23		23		23		23		23		23		23		23		23		23	
Mean		30.5	29.3	16.1		3.6		3.6		2.4		63.3		45.1		53.9		5.0		5.0		5.0	
Median		27.4	31.5	14.7		3.4		3.7		1.5		26.9		37.8		50.1		5.0		5.0		5.0	
St. Dev.		25.4	14.1	7.6		2.1		1.8		1.4		94.0		25.5		20.5		0.0		0.0		0.0	
Max		135.0	61.0	37.5		9.7		8.4		5.7		375.0		122.0		104.0		5.0		5.0		5.0	
Min		10.1	10.6	6.1		1.5		1.5		1.5		14.0		22.5		27.2		5.0		5.0		5.0	
C.V.		0.83	0.48	0.47		0.58		0.50		0.60	Ī	1.49		0.57		0.38		0.00		0.00		0.00	

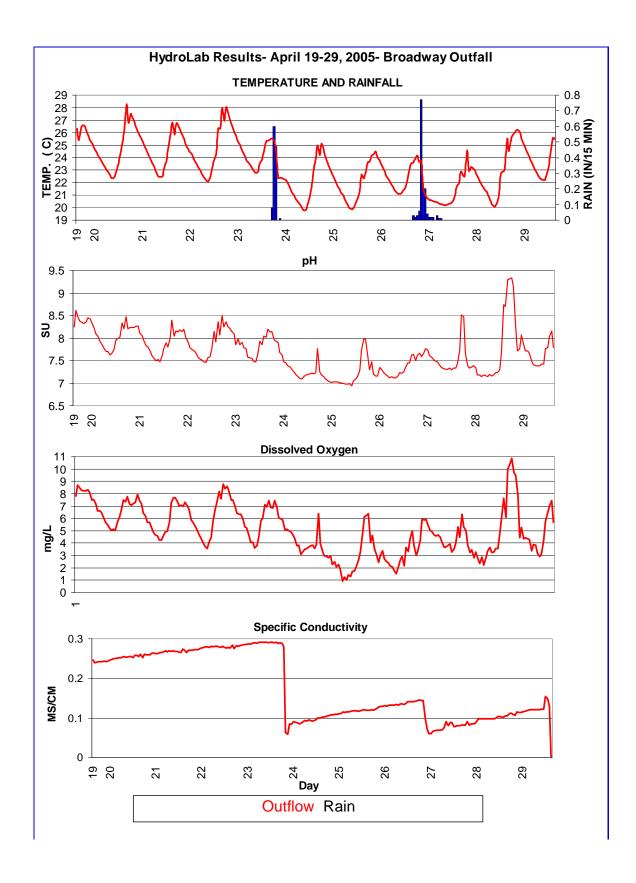

BASE FLOW	YEAR	THF	REE																													
Date				4	Aluminun	n					C	opp	er						I	ron								Zinc	;			
sample												Jg/L							u	ıg/L								Jg/L				
collected	base flow										Lab Deteo	ction	n Limit 3.(0					Lab Detect	tion	Limit 50.0						Lab Dete		n Limit 3()		
			934	D Q	935	D Q	939	D Q	556	D Q	934	D Q	935	D Q	939	D	556	D Q	934	D Q		D Q	939	D Q	550	D Q	934	D Q	935	D Q	939	
			934 BEFORE CDS		AFTER CDS		939 OUTFLO W		RAIN		934 BEFORE CDS	Q	AFTER CDS	Q	OUTFL OW	Q	RAIN	Q	934 BEFORE CDS	Q	AFTER CDS	-	OUTFL OW	Q	556 RAIN	Q	934 BEFORE CDS	Q	AFTER CDS		OUTFLC W	_
			101.00								4.50		4.50		4.50							_										_
11/15/2004	В	1	164.00		206.00		346				1.50	U	1.50	U		U			253		300	_	302				7.7		19.1		16.6	_
11/24/2004	В	2	97.70		98.10		277				1.50	U	1.50	U	1.50	U			209		202	_	239				23.5		26.8		10.7	_
12/9/2004	В	3	76.40		75.40		246				1.50	U	1.50	U		U			235		222	-	373				14.8		19.5		13.4	_
1/12/2005	В	4	36.70	1	25.00	1	359				1.50	U	1.50	U	1.50	U			239		230	_	222				13.0		13.0		13.4	_
2/14/2005	В	5	25.30	1	10.00	U	122				1.50	U	1.50	U	1.50	U			291		239	_	121				20.7		31.5		14.9	_
2/25/2005	В	6	24.50	1	38.90	1	283				1.50	U	3.61	1	1.50	U			265		279	_	275				32.0		46.9		16.5	_
3/3/2005	В	7	77.10		44.30	1	173				1.5	U	1.5	U		U			896		386	_	129				25		21.3		12	
4/7/2005	В	8	56.00		32.90	1	107				3.11	1	1.5	U		U			367		246	_	164				35.8		23		10.2	_
4/18/2005	В	9	31.40	Ι	25.30	1	65.9				1.5	U	1.5	U	1.5	U			285		285	_	175				28.4		28.3		9.92	
5/16/2005	В	10		Ι	29.80	Ι	467				1.5	U	1.5	U		Ι			217		241		596				21		17.5		38.6	
6/22/2005	В	11	289.00		54.80	1	50.2	Ι			4.55	1	4.7	1	5.01	Ι			530		235		220				70.3		26.3		25.6	
8/5/2005	В	12	56.30	Ι	66.50		171				7.06	1	6.42		1.5	U			100		114		117				18.3		28.7	J6		
9/20/2005	В	13	41.40	1	55.70	1	381				3.14	J	3.48		4.58				135		109	-	293				12.3		14.1		19.7	_
# Samples			13		13		13				13		13		13				13		13		13				13		13		13	
Mean			77.30		58.67		234.47				2.41		2.44		2.33				309.38		237.54		248.15				24.83		24.31		16.32	
Median			56.00		44		246				2		2		2				253		239		222				21		23		13	
St. Dev.			74.44		50.28		131.30				1.70		1.62		1.60				205		72.66		130.31				15.86		8.88		8.03	
Max			289.00		206.00		467.00				7.06		6.42		5.73				896		386		596				70.3		46.90		38.60	
Min			24.50		10.00		50.20				1.50		1.50		1.50				100		109		117				7.72		13		9.92	
C.V.			0.96		0.86		0.56				0.70		0.66		0.69				0.66		0.31		0.53				0.64		0.37		0.49	

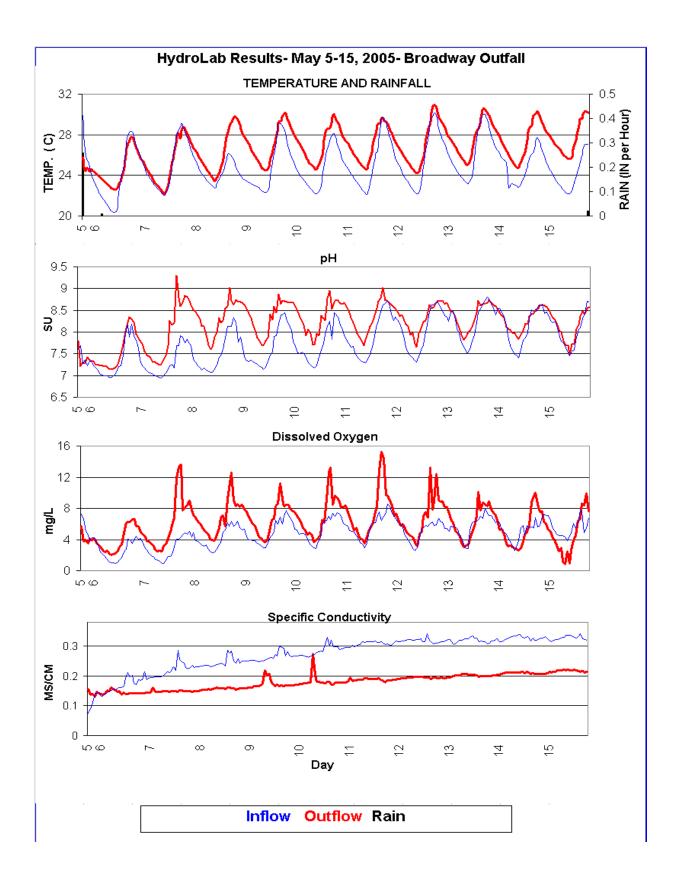

DISSOLVED N	/ETAL	S IN STOP	RM	FLOW	FO	R YEA	R T	HREE										Ĩ						
Date		Di	iss	olved Zi	nc			Dis	solv	ved Cop	pe	r		Diss	solved I	ron				Diss	olved L	ead		
	event																							
sample	or			ug/L						ug/L					ug/L						ug/L			
	base																							
collected	flow	Lab D	Dete	ection Li	mit	15		Lab D	ete	ction Lir	nit	3.0		Lab Dete	ection Li	mit	50.0		Lab	Det	ection Li	mit 2	2.0	
		934		935		939		934		935		939		934	935		939		934		935		939	
STORM FLOW YEAR THREE		BEFORE	D Q	AFTER CDS	D Q	OUTFL OW	D Q	I BEFORE I CDS	D Q	AFTER CDS	D Q	OUTFLO W	ם י קיי	BEFORE Q CDS	AFTER CDS	D Q	OUTFLO W	D Q	I DEFORE	DQ	AFTER CDS	DQ	OUTFLO W	DQ
11/15/2004	В	4.81	Ι	11.3		5.54	Ι	1.5	U	1.5	U	1.5	U	106	93.7		81.8		5	U	5	U	5	U
11/24/2004	В	18.9		21.8		3.57	I	1.5	U	1.5	U	1.5	U	88.5	69.1		64.4		5	U	5	U	5	U
12/9/2004	В	11.8		14.9		5.35		1.5	U	1.5	U	1.5	U	112	99.5		198		5	U	5	U	5	U
1/12/2005	В	9.1		11.2		3.96	Т	1.5	U	1.5	U	1.5	U	130	122		23.5	Т	5	U	5	U	5	U
2/14/2005	В	14		28.1		13.3		1.5	U	1.5	U	1.5	U	172	156		39.9		5	U	5	U	5	U
2/25/2005	В	27		40.8		6.41		1.5	U	1.5	U	1.5	U	171	168		18.3		5	U	5	U	5	U
3/3/2005	В	14.6		15.9		6.91		1.5	U	1.5	U	1.5	U	358	174		40.9		5	U	5	U	5	U
4/7/2005	В	15.7		22.3		9.64		1.5	U	1.5	U	1.5	U	171	161		54.8		5	U	5	U	5	U
4/18/2005	В	24.7		33.3		16.7	J	1.5	U	1.5	U	1.5	U	171	176		84.1		5	U	5	U	5	U
5/16/2005	В	18.3		15.3		13.5		1.5	U	1.5	U	1.5	U	108	105		74.6		5	U	5	U	5	U
6/22/2005	В	31.9		24.9		23.8		1.5	U	4.6	1	5.55	I	139	146		147		5	U	5	U	5	U
# Commiss		11		11		11		11		11		11	_	11	11	-	11		11		11		11	
# Samples					-				_				_			-						-		
Mean		17.3		21.8	-	9.9		1.5		1.8		1.9		157.0	133.7	+	75.2		5.0		5.0		5.0	+
Median St. Dev.		15.7 8.0		21.8 9.4	-	6.9 6.3		1.5 0.0		1.5 0.9	-	1.5 1.2	_	139.0 73.5	146.0 37.3	+-	64.4 54.1		5.0 0.0		5.0 0.0		5.0 0.0	-
		31.9		9.4 40.8	-	23.8	_	1.5		4.6		5.6		358.0	176.0	+	198.0	_	5.0		5.0		5.0	\vdash
Max Min		4.8		40.8		23.0 3.6	_	1.5		4.6	\vdash	1.5		88.5	69.1	+	196.0	_	5.0		5.0	-	5.0	\vdash
			\vdash		-		_				$\left - \right $					+		_						-
C.V.		0.46		0.43		0.64		0.00		0.52		0.65		0.47	0.28		0.72		0.00		0.00		0.00	

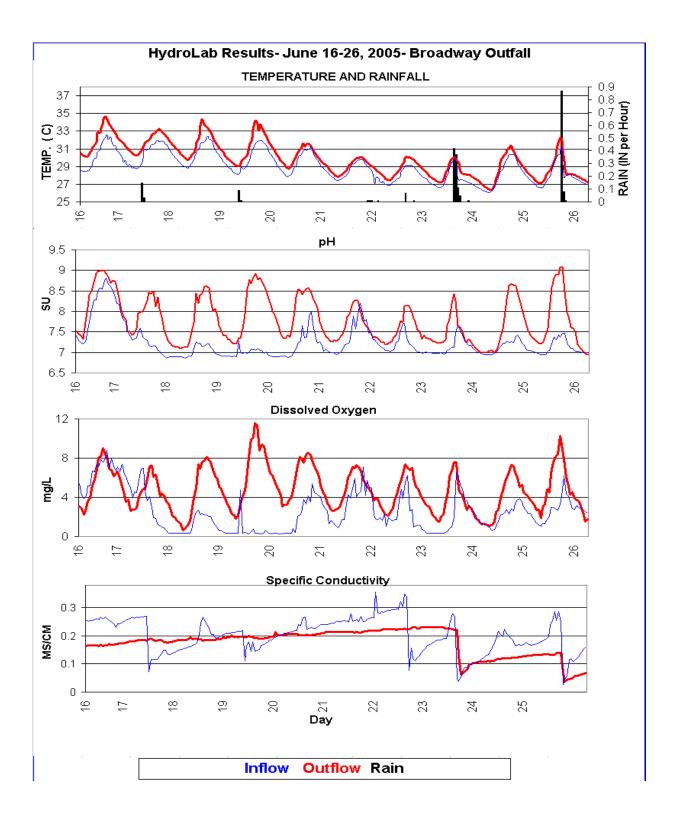

APPENDIX E

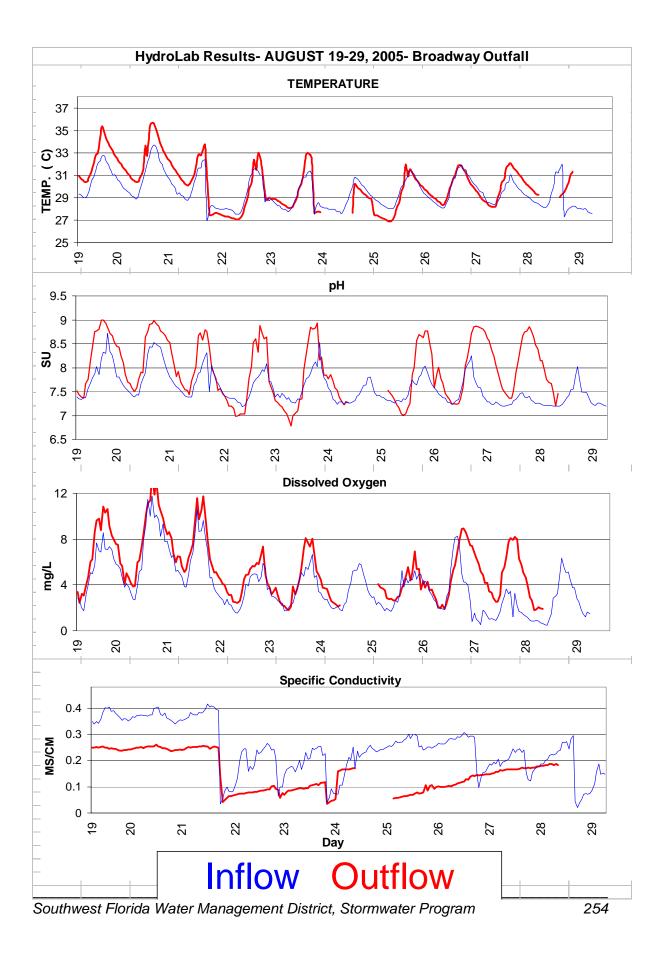

APPENDIX F


FIELD PARAMETERS









APPENDIX F

APPENDIX G

GROSS SOLIDS CONCENTRATIONS MEASURED IN CDS UNIT AT TIME OF CLEANOUT

Table G-1. Concentrations of constituents for clean out one (sieved sample) for April 2003 and clean out 2a (whole sample) for July 2003.

		SAMPLE A			SAMF	LE B		Tota	l for	Total for
Particle size	>850 uM	<850 uM		>850 uM	850-425	<425 uM		Each Cl	ean-Out	Year
Sieve Size	>#20	<#20	Total A	>#20	#20-40	<#40 uM	Total B	April-03	July-03	
RATIOS ====>	0.75	0.25	1.00	0.55	0.31	0.14	1.00	0.56	0.44	1.00
Amount (ft ³)								231	182	
CALCULATIONS FOR PA	Hs (ug/kg)									
Acenaphthene	1100	560	965	750	260	150	514	740	520	64
Anthracene	1800	2000	1,850	2700	780	420	1,786	1,818	1,360	1,61
Benzo (a) anthracene	13000	25000	16,000	15000	12000	7300	12,992	14,496	8,200	11,72
Benzo (a) pyrene	16000	33000	20,250	16000	14000	11000	14,680	17,465	9,400	13,91
Benzo (b) fluoranthene	24000	46000	29,500	21000	18000	13000	18,950	24,225	15,200	20,25
Benzo (g,h,l) perylene	10000	23000	13,250	9600	8700	7600	9,041	11,146	5,400	8,61
Benzo (k) fluoranthene	21000	42000	26,250	18000	15000	13000	16,370	21,310	5,400	14,31
Chrysene	26000	47000	31,250	24000	19000	14000	21,050	26,150	11,800	19,83
Fluoranthene	42000	61000	46,750	39000	28000	19000	32,790	39,770	24,000	32,83
Fluorene	1300	760	1,165	1300	400	230	871	1,018	740	89
Indeno (d,2,3l,-cd) pyrene	14000	28000	17,500	12000	11000	9700	11,368	14,434	6,600	10,98
Phenanthrene	23000	20000	22,250	21000	10000	6000	15,490	18,870	10,800	15,31
Pyrene	39000	60000	44,250	38000	28000	18000	32,100	38,175	18,400	29,47
TOTAL PAH (ug/kg)	232,200	388,320	271,230	218,350	165,140	119,400	188,002	229,616	117,820	180,42
METALS (mg/kg)										
COPPER	57.3	132	76	26.7	14.2	50.6	26	51	10	33.0
LEAD	17.1	76.4	32	5	29.9	14.2	14	23	14	18.9
ZINC	190	479	262	89.2	59.5	77.6	78	170	87	133.6
NUTRIENTS & ORGANIC	MATTER									
тос	25.8	8.3	21	30.9	3.8	2.2	18	20	5.5	n
O.M.(%)	45	14.4	37	53.9	6.63	3.88	32	35	13	2
TKN (mg/kg)	7060	5320	6,625	9520	1370	1120	5,818	6,221	2,240	4,47
TP (mg/kg)	1060	985	1,041	784	881	446	767	904	1,200	103
Bulk Density (g/cm ³)									0.53	

D:/BROADWAY/GROSS SOLIDS YEAR ONE

Table G-2. Constituent Concentrations of the gross solids for cleanout	
#2b on March 2004.	

	SIE	/ED SAMPL	E A	SIEV	/ED SAMPL	.EB	WHOLE	SAMPLE
Particle size	>850 uM	<850 uM		>850 uM	<850 uM			
Sieve Size	>#4	<#10-#200	Total A	>#4	<#10-#200	Total B	SAMPLE	SAMPLE
RATIOS ====>	0.68	0.32	1.00	0.64	0.36	1.00	А	в
Amount (ft ³)								
CALCULATIONS FOR PAI	Hs (ug/kg)							
Acenaphthene	48	120	71	68	240	130	51	75
Anthracene	66	170	99	100	210	140	158	237
Benzo (a) anthracene	740	1200	887	910	1300	1,050	1,263	1,842
Benzo (a) pyrene	1900	3300	2,348	2800	4800	3,520	1,924	2,895
Benzo (b) fluoranthene	6500	10000	7,620	8700	16000	11,328	5,526	7,632
Benzo (g,h,l) perylene	1400	2500	1,752	2100	5000	3,144	1,039	1,316
Benzo (k) fluoranthene	2000	3700	2,544	3200	4800	3,776	1,579	2,632
Chrysene	2000	2900	2,288	2400	3300	2,724	4,211	3,684
Fluoranthene	440	1200	683	1300	880	1,149	5,921	8,289
Fluorene	11	27	16	28	46	34	112	158
Indeno (d,2,3l,-cd) pyrene	1700	3200	2,180	2700	5800	3,816	1,316	1,711
Phenanthrene	60	170	95	290	210	261	1,197	1,974
Pyrene	460	1100	665	1100	920	1,035	4,605	6,447
Dibenz(a,h) anthracene	bd	650	208	630	1300	871	329	421
TOTAL PAH (ug/kg)	17,325	30,237	21,457	26,326	44,806	32,979	29,231	39,313
METALS (mg/kg)								
COPPER	32	140	67	45	96	63	13	13
LEAD	5.1	78	28	8.4	31	17	5	6
ZINC	83	360	172	129	319	197	62	74
NUTRIENTS & ORGANIC	MATTER							
тос								
O.M.(%)							101	100
TN (mg/kg)	5600	5500	5,568	5800	5400	5,656	2,240	2,368
TP (mg/kg)	220	450	294	230	610	367	1,200	111
Bulk Density (a/cm ³)							0.10	

DATA for whole sample as it was reported by lab and converted to dry weight by dividing by 0.76.

Conversion changes wet weight to dry weight according to the laboratory director.

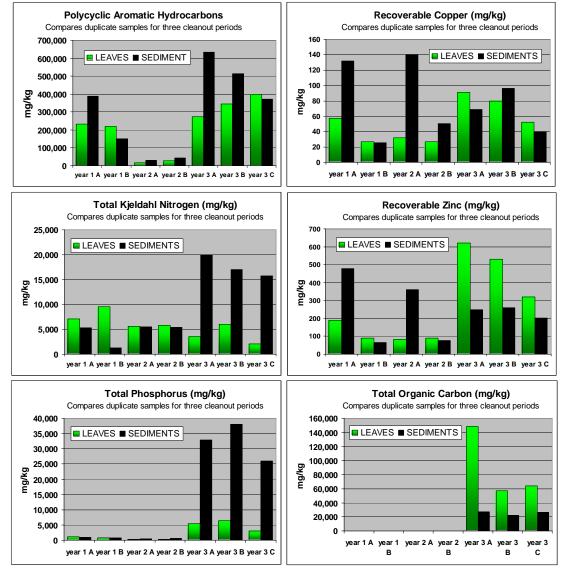
Even though sieved samples reported as wet weight lab director and I decided they couldn't have been sieved wet.

Particle sizes are adjusted to make more comparable to other data

D:/BROADWAY/GROSS SOLIDS YEAR TWO

Table G-3. Chemical analysis Table F-3. Analysis of the material in the CDS unit for year three.

Separated by Partical Size	N	IE Corner (A)	S	W Corner	(B)		Dump	Site (C)		Avg. for
Particle size*	>425 um	< 425 um		>425 um	< 425 um		>425 um	425-75 um	< 75 um		A & B
Sieve Size	> 40	40-200	Total A	> 40	40-200	Total B	> 40	40-200	<200	Total C	
RATIOS ====>	0.72	0.284	1.00	0.77	0.227	1.00	0.57	0.35	0.08	1.00	1.00
CALCULATIONS FOR PAHs	(ualka)										
Acenaphthene	(ug/kg) 320	810	460	200	200	199	250	450	580	346	330
Anthracene	1700	2900	2,048	1800	200	1,885	2100	2400	2200	2,213	1,967
Benzo (a) anthracene	15000	38000	2,040	16000	30000	19,130	2100	2400	25000	22,020	20,361
Benzo (a) pyrene	24000	62000	34,888	27000	49000	31,913	33000	34000	41000	33,990	33,401
Benzo (b) fluoranthene	20000	100000	42,800	53000	86000	60,332	65000	56000	73000	62,490	51,566
Benzo (g,h,i) pervlene	23000	56000	32,464	23000	30000	24,520	23000	24000	28000	23,750	28,492
Benzo (k) fluoranthene	20000	39000	25,476	28000	45000	31,775	31000	29000	37000	30,780	28,626
Chrysene	35000	65000	43,660	39000	52000	41,834	43000	37000	45000	41,060	42,747
Fluoranthene	53000	98000	65,992	62000	81000	66,127	68000	53000	60000	62,110	66,060
Fluorene	290	185	261	285	175	259	235	820	640	472	993
Indeno (1,2,3,-cd) pyrene	27000	68000	38,752	33000	53000	37,441	38000	38000	47000	38,720	38,097
Phenanthrene	13000	27000	17,028	15000	22000	16,544	19000	18000	16000	18,410	16,786
Pyrene	41000	78000	51,672	46000	63000	49,721	53000	43000	49000	49,180	50,697
i yrene	41000	70000	51,072	40000	05000	43,721	33000	43000	43000	43,100	00,037
TOTAL PAH (ug/kg)	273,310	634,895	377,093	344,285	513,575	381,681	396,585	358,670	424,420	385,542	379,387
METALS (mg/kg)											
COPPER	91	69	85	80	96	83	52	34	63	47	84
LEAD	45	30	41	79	43	71	46	23	30	37	56
ZINC	620	250	517	530	260	467	320	190	250	269	492
NUTRIENTS & ORGANIC MA											
TOC	148000	27000	114,228	57000	22000	48,884	64000	26000	28000	47,820	81,556
Moisture(%)	7.7	0.8	5.8	6.3	0.7	5.0	14.7	1.7	1.0	9.1	5.4
TKN (mg/kg)	3500	200000	59,320	6000	170000	43,210	2100	3000	70000	7,847	51,265
TP (mg/kg)	5400	33000	13,260	6500	38000	43,210	3000	23000	39000	12,880	13,446
TE (INg/Kg)	5400	33000	13,260	0000	30000	13,031	3000	23000	39000	12,000	13,440
SOILS TESTING											
Percent Solids (%)			29.9			30.0				57.1	30.0
Moisture Content (% wet wt.)			70.1			70.0				42.9	70.1
Moisture Content (% dry wt.)			234.6			233.5				75.2	234.1
Loss on Ignition (%)			72.7			72.8				29.3	72.8
Wet Bulk Density (pfc)			32.3			61.6				59.9	47.0
Wet Bulk Density (g/cm ³)			0.52			1.00				0.97	0.76
Dry Bulk Density (pfc)			9.65			18.47				34.24	14.06
Dry Bulk Density (g/cm ³)			0.156			0.30				0.55	0.23

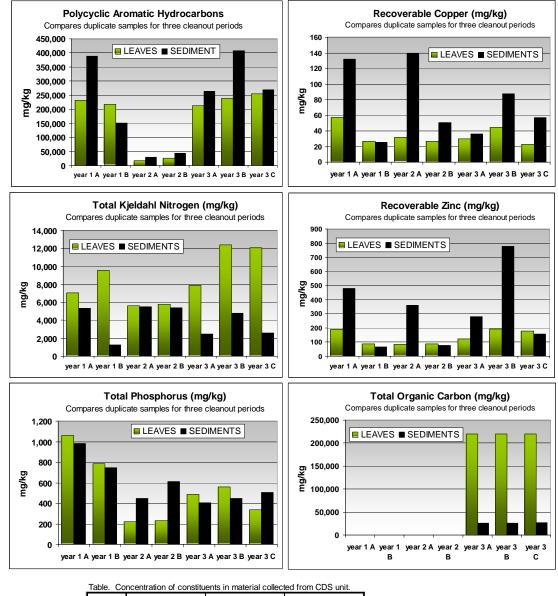

*The largest particle size is mostly leaves

Numbers in italics (Acenaphthene and Fluorene) were below the laboratory detection limit and one-half the detection limit was used

Table G-4. Particle size analysis for the three cleanouts where sieve analyses were performed. COL=lab #1 and PPB=lab #2. Samples A and B were collected in the CDS unit with an Ekman dredge. Sample C was collected the next day at the dump site.

Year	Location	LAB	Sieve Size	Particle Size	Percent
	Collected				Present
year one	A	COL	#20	850 um	74.0
vear one	А	COL	#40	425 um	7.5
year one	A	COL	#80	180 um	7.2
year one	Â	COL	#100	150 um	2.8
-					
year one	A	COL	#200	75 um	7.8
year one	A	COL	<#200	<75 um	0.6
year one	В	COL	#20	850 um	44.8
year one	В	COL	#40	425 um	24.7
year one	В	COL	#80	180 um	23.5
year one	В	COL	#100	150 um	2.6
year one	В	COL	#200	75 um	4.1
year one	В	COL	<#200	<75 um	0.2
-					
year two b	A	COL	#4		68.4
•	Â	COL	#10		12.3
year two b				050	
year two b	A	COL	#20	850 um	6.3
year two b	A	COL	#40	425 um	2.1
year two b	A	COL	#60		1.5
year two b	A	COL	#140		3.2
year two b	A	COL	#200	75 um	1.0
year two b	A	COL	<#200	<75 um	5.2
year two b	В	COL	#4		64.3
vear two b	В	COL	#10		2.5
year two b	B	COL	#20	850 um	6.9
year two b	В	COL	#40	425 um	3.2
· ·	В	COL	#40	425 um	2.0
year two b					
year two b	В	COL	#140		4.0
year two b	В	COL	#200	75 um	1.3
year two b	В	COL	<#200	<75 um	15.8
year three	A	COL	#40	425 um	71.6
year three	A	COL	#80	180 um	6.7
year three	A	COL	#100	150 um	3.4
year three	A	COL	#200	75 um	10.3
year three	A	COL	<#200	<75 um	8.0
year three	В	COL	#40	425 um	77.3
year three	В	COL	#80	180 um	11.4
year three	В	COL	#100	150 um	2.1
year three	B	COL	#200	75 um	8.1
		COL	<#200	<75 um	1.1
year three	B				
year three	C	COL	#40	425 um	57.3
year three	С	COL	#80	180 um	20.0
year three	С	COL	#100	150 um	6.2
year three	С	COL	#200	75 um	8.5
year three	С	COL	<#200	<75 um	8.0
year three	A	PPB	#40	425 um	61.9
year three	A	PPB	#80	180 um	19.1
year three	A	PPB	#100	150 um	5.8
year three	A	PPB	#200	75 um	11.9
year three	A	PPB	<#200	<75 um	1.3
year three	B	PPB	#40	425 um	73.2
•					
year three	В	PPB	#80	180 um	13.8
year three	В	PPB	#100	150 um	4.4
year three	В	PPB	#200	75 um	7.8
year three	В	PPB	<#200	<75 um	0.8
year three	С	PPB	#40	425 um	56.3
year three	С	PPB	#80	180 um	22.2
year three	C	PPB	#100	150 um	7.3
year three	C	PPB	#200	75 um	12.8
year three	C	PPB	<#200	<75 um	1.4
vear triee		FFD	~#Z00	~75 um	1.4

Figure G-1 and Table G-5. Constituent concentrations for a year compared to results from lab #1 for year 3.



	Copper	(mg/kg)	Zinc (r	mg/kg)	PAHs	(ug/kg)
	leaves	sediment	leaves	sediment	leaves	sediment
year 1 A	57	132	190	479	232,200	388,320
year 1 B	27	25	89	65	218,350	150,961
year 2 A	32	140	83	360	17,325	30,237
year 2 B	26.7	50.6	89	78	26,326	44,806
year 3 A	91	69	620	250	273,310	634,895
year 3 B	80	96	530	260	344,285	513,575
year 3 C	52	40	320	201	396,585	371,163
	TKN (I	mg/kg)	Total Phs	ophorus	TOC (r	ng/kg)
	leaves	sediment	leaves	sediment	leaves	sediment
year 1 A	7,060	5,320	1,060	985	26	8
year 1 B	9,520	1,293	784	746	31	3
year 2 A	5,600	5,500	220	450	na	na
year 2 B	5,800	5,400	230	610	na	na
1100× 2 A	3,500	20,000	5,400	33,000	148,000	27,000
year 3 A				00.000	F7 000	00.000
year 3 B	6,000	17,000	6,500	38,000	57,000	22,000

Table. Concentration of constituents in material collected from CDS unit.

Red numbers represent weighted combination of two reported sieve sizes

Figure G-2 and Table G-6. Constituent concentrations for all years compared to results from lab #2 for year 3.

Copper leaves	(mg/kg) sediment	Zinc (r leaves	ng/kg) sediment	PAHs (
	sediment	leaves	codimont	1	
F 7		100100	Seument	leaves	sediment
57	132	190	479	232,200	388,320
27	25	89	65	218,350	150,961
32	140	83	360	17,325	30,237
27	51	89	78	26,326	44,806
30	36	124	282	213,045	263,427
44	87	191	776	239,655	407,690
23	57	177	156	254,270	268,085
TKN (r	ng/kg)	Total Phs	ophorus	TOC (n	ng/kg)
leaves	sediment	leaves	sediment	leaves	sediment
7,060	5,320	1,060	985	26	8
9,520	1,293	784	746	31	3
5,600	5,500	220	450	na	na
5,800	5,400	230	610	na	na
7,904	2,472	488	404	220,000	25,949
40 440	4 700	550	446	220.000	0E E46
12,416	4,799	559	440	220,000	25,516
	32 27 30 44 23 TKN (r eaves 7,060 9,520 5,600 5,800 7,904	32 140 27 51 30 36 44 87 23 57 TKN (mg/kg) sediment 7,060 5,320 9,520 1,293 5,600 5,500 5,800 5,400 7,904 2,472	32 140 83 27 51 89 30 36 124 44 87 191 23 57 177 TKN (mg/kg) Total Phs eaves sediment leaves 7.060 5,320 1,060 9,520 1,293 784 5,600 5,500 220 5,800 5,400 230 7,904 2,472 488	32 140 83 360 27 51 89 78 30 36 124 282 44 87 191 776 23 57 177 156 TKN (mg/kg) Total Photometrics sediment eaves sediment leaves sediment 5,060 5,500 1,060 985 5,600 5,500 220 450 5,800 5,400 230 610 7,904 2,472 488 404	32 140 83 360 17,325 27 51 89 78 26,326 30 36 124 282 213,045 44 87 191 776 239,655 23 57 177 156 254,270 TKN (mg/kg) Total Phsophorus TOC (r eaves sediment leaves sediment leaves 7,060 5,320 1,060 985 26 9,520 1,293 784 746 31 5,600 5,500 220 450 na 5,800 5,400 230 610 na 7,904 2,472 488 404 220,000

Red numbers represent weighted combination of two reported sieve sizes

Southwest Florida Water Management District, Stormwater Program

APPENDIX H

GROSS SOLIDS: AN UNTESTED METHOD FOR EFFICIENCY CALCULATION

GROSS SOLIDS: AN UNTESTED METHOD FOR EFFICIENCY CALCULATIONS Betty Rushton, Ph.D.

Many monitoring programs designed to determine the effectiveness of Best Management Practices (BMPs) for stormwater management have narrowly defined the size, concentration and mass of solids in the runoff. Since most monitoring and BMP evaluation studies have continued the same methods that were developed to sample wastewater treatment systems, these studies typically use paired influent/effluent samples collected with automatic water quality samplers to determine the efficiency of a BMP to remove pollutants.

Automatic samplers generally exclude solid material including trash, litter, debris and sediments larger than 100 microns. Yet these pollutants degrade aquatic habitat, cause visual blight, smother productive sediments, leach harmful pollutants, and can cause unpleasant odors. This solid material is referred to in this paper as gross solids and is divided into three categories: 1) Litter includes human derived trash, such as paper, plastic, Styrofoam, metal and glass; 2) Debris consists of organic material including leaves, branches, seeds, twigs and grass clippings; and 3) Coarse sediments are inorganic breakdown products from soils, pavement or building materials. New methods for characterization and analysis of all pollutants of concern are needed if better data is to be obtained and used in decisions on compliance with TMDLs and NPDES permits and the selection of BMPs that will achieve pollution reduction goals.

The growing interest in mitigating the aesthetics and environmental impacts of trash and debris in the nations' waters and regulation of these pollutants through TMDLs has resulted in the development of a number of proprietary products designed to trap and separate these gross solids from the runoff path before discharge.

The Broadway Outfall project is trying to test the efficiency of a CDS unit and emphasizes some of the problems associated with adequately measuring pollution reduction. A CDS unit is an underground stormwater treatment method used to capture gross solids in urban areas by intercepting storm runoff in the conveyance pipe system. The mechanism by which the unit separates and retains gross solids is by deflecting the inflow and associated pollutants away from the main flow stream into a pollutant separation and containment chamber.

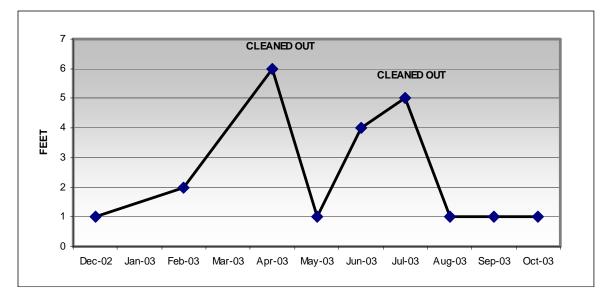
This retrofit project was designed to reduce the amount of pollution discharged to the Hillsborough River and ultimately Tampa Bay by installing a MODEL PSW100_60 (32 CFS capacity) CDS unit and a constructed linear marsh. The drainage basin is approximately 132.4 acres in size and includes a 30.6-acre high intensity strip commercial district immediately upstream. The remainder of the watershed includes multi-family and residential land uses as well as a golf course and major urban thoroughfares. The drainage basin receives no sewage overflow and the streets are periodically cleaned with a street sweeper. The purpose of this paper is to calculate the ability of the CDS unit to remove pollutant loads (percent efficiency) by also incorporating the material collected in the CDS sump. The proposed calculations for including gross solids in efficiency calculations described in this paper are intended to elicit discussion from other researchers and it is not a proven or recommended method.

Methods

The method to collect the data is presented in this section and the method to calculate efficiency is discussed later.

Hydrology - Hydrology measurements were calculated using velocity meters, water level sensors, and tipping bucket rain gauges. Levels were converted to flow using appropriate weir and pipe formulas. This information was stored in data loggers until retrieved and downloaded into spreadsheets to be processed into tables and figures. Bypass flow over a diversion weir was also measured. The flow was measured continuously and this flow was divided into storm flow, base flow and bypass flow. The flow calculations were checked against an estimated water budget for the pond (Rushton 2004).

Water Quality - Flow weighted samples were collected to measure water quality for both storm flow and base flow using automated samplers. Samples were taken in front of and after the CDS unit. It was not possible to sample the overflow concentrations because these became almost immediately mixed with the CDS outflow downstream of the diversion weir. For bypassed flow, it was assumed that the same concentrations would be present as were measured at the inflow of the CDS unit. The system discharged continuously, and the base flow samples were collected several times during the month with each sample representing about a two-day period.


Gross Solids - Representative samples of the material in the CDS unit were analyzed each time the unit was vacuumed out. The trash was removed from the mass of material and was quantified separately. Standard methods for soil analysis were used to quantify the gross solids. The amount collected in the CDS unit was estimated by using the volume of the sump basin and the depth of the material in the sump.

Results And Discussion

During the first year of the study the CDS unit collected almost all of its gross solids during a six-month period in the spring and summer (Figure 1). The data in this report represent this six-month period, which extended from February 1st to July 14th, 2003. During this time period, 18 storm samples and 26 base flow samples were analyzed for water quality. This included 57 percent of all the storm event rainfall and many of the smaller events that were not sampled were included in the base flow samples. All of the flow was measured and included in the calculations for mass loading. Both average and median values for water quality were used in the calculations to estimate load reductions. The CDS unit collected 336 cubic feet of material and most of the collected mass was leaves (55 to 75 percent).

Calculating pollution removal

One of the purposes of the study was to calculate load reductions that could be compared to other stormwater studies and that are appropriate for determining TMDLs. The automatic water quality samplers usually used to evaluate pollution reduction do not adequately sample the gross solids collected by CDS units and other proprietary devices. The following section explains the method used to include gross solids in the calculation for load reductions.

Figure 1. Measurements taken inside the CDS unit to determine how much material had been collected and to schedule clean-outs. The period from February 1 to July 14, 2003 includes the data analyzed for this report.

A summary of all the flow, water quality and gross solids data collected during the six-month period used to calculate pollution load reductions is shown in Table 1. Several assumptions had to be made and these include:

- The same amount of water left the CDS unit as entered at the inflow, except for the flow that was discharged over the bypass weir.
- The water that discharged over the bypass weir had the same water quality as the water that entered the CDS unit.
- The average and median values for water quality analyzed for the sampled storms (57 percent) are representative of all storms.
- The average and median values for water quality analyzed for the base flow sampled (about 30 percent) are representative of all base flow.
- The gross solids that were collected in the CDS unit represent all the gross solids that entered the system (This is not entirely true because floating litter and leaves did bypass the CDS unit during high flow and considerable pavement material was noted in the sediments in the pond).
- The calculations for solids use total suspended solids for the water quality data and total solids collected by the CDS unit for the gross solids.

The standard method for measuring BMP system efficiency (the amount of pollution reduced or increased) is calculated with the following formula:

percent efficiency =
$$(load in) - (load out)$$

(load in)

To use the formula all the loads must be in comparable units. For our analysis we used grams and kilograms.

Step 1.

To convert the gross solids loads, the volume had to be converted from cubic feet to kilograms. The bulk density measurement was used for this calculation.

(Mass of gross solids)*(bulk density)*(conversion factors)

Where:

Mass of gross solids = 336 cubic feet Bulk Density = 0.54 g/cm^3

Using these calculations our site had 5137 kilograms of gross solids measured during the two cleanout periods.

Step 2.

To convert the individual constituents measured by the laboratory for the gross solids material. The constituents were reported in mg/kg. The calculation took the form:

(Constituent mg/kg)*(5137 kg of gross solids)*(conversion factors)

The results from these calculations are shown as the loads captured in CDS unit in Table 1.

TYPE WATER	AMOUNT				AL		RABLE	RECOVE	=KABLE	тот	AL [~]	ORT	HU I	AMM	JINIA	NITR/	~ ! ⊑ !	10	TAL
WATER		NITRO	GEN	PHOSPH	HORUS	COP	PER	ZIN	1C	soi	LIDS	PHOSP	HORUS			NITF	ITE	KJELD	AHL-N
WATER		BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTE
	QUALITY	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/
STORM SAM	/IPLES							,		,									
# Samples		18	18	18	18	18	18	18	18	17	17	18	18	18	18	18	18	18	18
Mean		1.141	1.217	0.104	0.108	9.5	11.8	51.8	58.7	14.2	14.4	0.027	0.023	0.057	0.036	0.440	0.373	0.701	0.84
Median		1.150	1.115	0.092	0.092	9.4	9.8	46.8	49.2	11.7	12.8	0.024	0.019	0.018	0.018	0.441	0.378	0.631	0.73
St. Dev.		0.291	0.351	0.048	0.049	3.3	5.3	23.7	34.7	11.7	10.0	0.020	0.016	0.071	0.047	0.228	0.186	0.271	0.37
Max		1.740	1.900	0.235	0.205	18.6	25.5	112.0	147.0	50.1	49.4	0.081	0.063	0.205	0.160	1.010	0.819	1.198	1.51
Min		0.591	0.656	0.039	0.046	3.9	3.9	10.4	11.6	1.6	3.3	0.005	0.005	0.006	0.006	0.074	0.065	0.180	0.31
C.V.		0.25	0.29	0.46	0.45	0.3	0.4	0.5	0.6	0.8	0.7	0.74	0.72	1.26	1.29	0.52	0.50	0.39	0.4
BASE FLOW	SAMPLES																		
# Samples		26	26	26	26	26	26	26	25	26	25	26	26	26	26	26	26	26	26
Mean		1.488	1.376	0.069	0.074	11.7	11.5	23.1	25.9	5.8	6.8	0.025	0.018	0.022	0.039	0.915	0.705	0.573	0.67
Median		1.440	1.305	0.051	0.065	9.0	8.5	20.4	18.5	3.6	4.4	0.019	0.016	0.016	0.024	1.030	0.699	0.454	0.62
St. Dev.		0.318	0.280	0.044	0.040	13.8	11.6	12.6	19.5	5.4	5.6	0.021	0.012	0.019	0.045	0.383	0.310	0.290	0.28
Max		2.250	2.050	0.169	0.185	74.0	61.2	44.9	67.6	21.5	23.8	0.091	0.046	0.074	0.197	1.940	1.320	1.132	1.44
Min		0.760	0.800	0.016	0.018	1.5	3.2	5.9	5.6	0.6	1.1	0.005	0.005	0.006	0.006	0.269	0.177	0.250	0.28
C.V.		0.21	0.20	0.64	0.54	1.18	1.01	0.54	0.75	0.93	0.82	0.84	0.68	0.89	1.16	0.42	0.44	0.51	0.43
MASSI	OADING																		
LOW***	(cu ft)	(kg)	(kg)	(kg)	(kg)	(grams)	(grams)	(grams)	(grams)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)
MEANS	, <i>,</i> ,															. =/			
STORM	3,594,432	116.2	123.8	10.6	11.0	965.1	1198.6	5276.9	5973.6	1443.6	1461.3	2.7	2.3	5.8	3.7	44.8	38.0	71.4	85.9
BYPASS**	1,655,237	53.5	53.5	4.9	4.9	444.4	444.4	2430.0	2430.0	664.8	664.8	1.3	1.3	2.7	2.7	20.6	20.6	32.9	32.9
BASE	1,318,881	55.6	51.4	2.6	2.8	436.6	429.7	861.6	968.1	218.2	253.4	0.9	0.7	0.8	1.4	34.2	26.3	21.4	25.
MEDIANS																			
STORM	3,594,432	117.1	113.5	9.4	9.4	959.4	1000.6	4764.0	5003.2	1191.0	1303.0	2.4	1.9	1.8	1.8	23.2	19.0	64.2	74.3
BYPASS	1,655,237	53.9	53.9	4.3	4.3	441.8	441.8	2193.8	2193.8	548.5	548.5	1.1	1.1	0.8	0.8	20.6	20.6	29.6	29.0
BASE	1,318,881	53.8	48.7	1.9	2.4	334.5	317.3	762.0	691.0	133.3	162.8	0.7	0.6	0.6	0.9	38.5	26.1	16.9	23.
	ED IN CDS																		
				(mg/kg)		(u g/kg)		(u g/kg)		(cu.ft.)								(mg/kg)	
		na		770		33		134		336		na		na		na		3.977	-
10	ADS	1155		(kg)		(grams)		(grams)		(kg)								(kg)	
		na		3.96		(grains) 139.5		(grams) 688.5		(Ng) 5138.0		na		na		na		20.4	

Table 1. Summary data for water quality and gross solid concentrations and loads for the period Feb. 1 to July 12, 2004.

* Total solids are total suspended solids for water quality and total solids for loads.

na=not analyzed for

**Assumes that the same load bypassed unit both before and after the CDS unit

*** Assumes the same flow leaves CDS unit as enters CDS unit since it is a closed system except for bypass weir and that flow is subtracted out

Step 3.

To convert water quality data to loads (average and median values were calculated separately but they both use the same method).

(constituent mg/l)*(flow for time period ft³)*(conversion factors)

Where:

Storm flow for period = 3,594,432 cubic feet Bypass flow for period=1,655,237 cubic feet Base flow for period=1,318,881 cubic feet Constituent concentrations from Table 1

The results are shown as mass loading in Table 1.Step 4.

The efficiency of the CDS unit to remove pollutants is calculated by the standard formula and uses either the average or median loads as calculated above.

Percent efficiency = (storm in+bypass in+base in+sump) – (storm out + bypass in +base out)

(storm in + bypass in + base in + sump)

Where:

Storm in = storm loads in front of CDS unit calculated by Step 3 above Bypass in=bypass loads in front of CDS unit calculated by step 3 above. Base in=base flow loads in front of CDS unit calculated by step 3 above Sump=loads calculated in step 2 above. Storm out =storm loads after CDS unit calculated by step 3 above Base out=base flow loads after CDS unit calculated by step 3 above

Pollution Removal Efficiency

Including the sump material in the efficiency calculations improves the efficiency of the CDS unit to remove pollutants by a large amount and also shows that the CDS unit is quite good at reducing some pollutants and is not effective for removing others. The percent efficiency calculated for loads both with and without the sump material is shown in Table 2.

Total Solids – The unit is quite effective at removing the larger solid material (>75 microns) found in bed loads such as street dirt, leaves and other large size particles. Total solids were removed by 68 to 71 percent. This is not surprising since the units were designed to capture this type of material. If the 32 percent of the flow that bypassed the CDS unit is considered by assuming that the bypassed flow contained the same proportion of material as was collected by the CDS unit then the percent reduction is between 56 and 58 percent. The increase in suspended loads in the water column indicates that particles are being broken down into smaller particles as they moves around in the CDS unit.

Total Phosphorus – The efficiency measured for total phosphorus (15 percent to 18 percent) probably reflects the fact that phosphorus easily attaches to soil particles and organic material and it is expected it would be reduced by attaching to solids. Ortho phosphorus, the inorganic portion of total phosphorus is reduced by 13 percent in the water samples indicating it is being transformed to organic nitrogen or attaching to

particles. Better efficiency would probably have been measured except that leaf litter releases phosphorus when soaked in water (Strynchuk et al. 1999). In bench studies, concentrations of phosphorus increased by 89 percent in water after it was soaked with grass clippings and tree leaves for only one day. There was a corresponding decrease in the phosphorus measured in the solids of 54 percent.

Table 2. Load Efficiencies including loads for water quality samples only andloads that also include the amount retained in the CDS unit. Negative percentagesindicate higher loads were discharged from the CDS unit than entered.

Constituent	Water Q	uality Only	Includes C	DS Loads
	Sample Means	Sample Medians	Sample Means	Sample Medians
Total Solid *	-2%	-8%	68%	71%
Total Kjeldahl Nitrogen	-15%	-15%	2%	3%
Total Phosphorus	-4%	-3%	15%	18%
Recoverable Copper	-12%	-1%	-4%	6%
Recoverable Zinc	-9%	-2%	-1%	6%
Total Nitrogen	-2%	4%	na	na
Ammonia **	15%	-6%	na	na
Nitrate + Nitrite	15%	20%	na	na
Ortho Phosphorus	13%	13%	na	na

* Water Quality samples include only the suspended solids loads and the CDS loads are total loads.

** The median calculations for ammonia were skewed by six rain events where ammonia was measured below

the laboratory limit of detection. When these events are eliminated the efficiency is +29 percent

na = not analyzed in the material collected by the CDS unit.

Total Kjeldahl Nitrogen (TKN) – When the sump material is included in the calculations, TKN improves from an increase of 15 percent to a small amount of removal (2 percent to 3 percent). Some of this can be explained by nitrogen transformations. TKN is the combination of organic nitrogen and ammonia. Much of the ammonia and nitrate is converted to organic nitrogen and these soluble nutrients are reduced in the CDS unit as shown for the water quality sample means. The negative efficiency for water quality samples for ammonia was caused by six rain events where concentrations for both the inflow and outflow were below the laboratory detection limit. When these values were removed the ammonia in the CDS was reduced by 29 percent instead of the 6 percent increase calculated in the table. It might be expected that nitrogen would increase in the water rolumn as it passed through the CDS unit. TKN was increased by 31 percent in water that was used to soak grass clippings and tree leaves in bench experiments when measured after one day (Strynchuk et al. 1999). There was a corresponding decrease in concentrations in the litter of 11 percent.

Recoverable Metals – Copper, lead and zinc were measured at low concentrations at the site and probably exhibited no reduction by the CDS unit. Besides the low concentrations, the low pollution removal can possibly be explained by the tendency of metals to attach to the smaller sized particles such as clay, which were not collected by the CDS unit. Particle size analysis measured no particles retained less than 75 microns. Although organic material has been found to be an effective sink for metals and most of the material collected by the CDS unit was tree leaves, the zinc, lead

and copper concentrations retained were quite low and averaged values were below levels considered toxic to sensitive organisms. (Lead was not evaluated for this paper because most concentrations were below the laboratory detection limit).

Conclusions

Including the gross solids in the efficiency calculations improves the performance of these systems. Other methods are still needed to remove most constituents to acceptable levels.

Reference

Syrynchuk, J., J. Royal and G. England. 1999. Grass and Leaf Decomposition and Nutrient Release Study under Wet Conditions. In Sixth Biennial Stormwater Research & Watershed Management Conference. Southwest Florida Water Management District, 2379 Broad Street, Brooksville, Florida 34604.

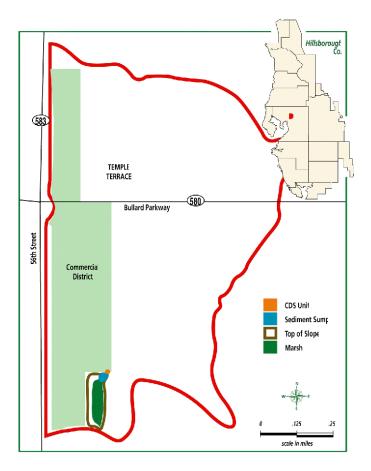
APPENDIX I

GROSS SOLIDS: A SUMMARY PAPER OF RESULTS

Removal of Pollutants by a CDS Unit at a Major Storm Outfall in Florida

Betty Rushton, Ph.D. University of Florida, Department of Environmental Engineering Sciences, 2233 SW 70th Ave, Gainesville, FL 32608. Email:bettyrs@atlantic.net

Abstract


A major storm drain pipe was retrofitted with a CDS unit and a linear pond to help treat stormwater discharged from an urban drainage basin in Tampa, Florida. The CDS technology is designed to remove large sized particles such as litter, leaves, twigs, sand and paving residue from storm runoff. Results of this research suggest that it removes these gross solids very well, but it does not remove the dissolved and suspended particles present in the water column. The CDS unit did remove levels of PAHs at concentrations many times higher than levels considered toxic to benthic organisms. Since PAHs do not easily dissolve in water, they are rarely measured in water quality studies, but are considered a serious problem in sediments in portions of Tampa Bay. The data did not support the idea that the leaves collected by the CDS unit leached nutrients and increased their concentrations in the water that left the CDS unit, but this result may be influenced because leaching had already occurred while the leaves and discharge water traveled through the storm drain together. If litter and large sized particles are the pollutants of concern in a drainage basin, a CDS unit is a good solution, but if dissolved or suspended particles, especially nutrients, are a problem, a CDS unit will not reduce those pollutants. A CDS unit is probably best suited as the first element in a series of stormwater treatment methods.

Introduction

This stormwater retrofit project was designed to reduce the amount of pollution discharged to the Hillsborough River and ultimately Tampa Bay by constructing a CDS unit and small pond at a major urban storm sewer outfall. The project consisted of two phases. Construction of the retrofit (phase 1) was completed in November 2001; and the performance evaluation effort (phase II) was initiated in November 2002 and was completed in November 2005. The monitoring project was designed to measure: 1) how much and what kind of gross solids (> 64 microns) are collected by the CDS unit, 2) the concentration of constituents in the runoff for the suspended and dissolved particles for storm flow and base flow 3) the accumulation of pollutants in the sediments of the pond, 4) the species and diversity of the macro-invertebrates in the sediments, and 5) the hydrology of the system including storm flow, base flow and rainfall. This paper only includes results from the CDS unit for four cleanout periods covering a three-year time span and also reports some of the hydrology and water quality data for the cleanout intervals. A complete report should be available on the internet after December 2006. http://www.swfwmd.state.fl.us/documents/

Site Description

The drainage basin that discharges through the Broadway Outfall storm sewer is approximately 53.58 hectares (132.4 acres) in size and includes a 12.3 hectare (30.6-acres) high intensity commercial district immediately upstream from the site.

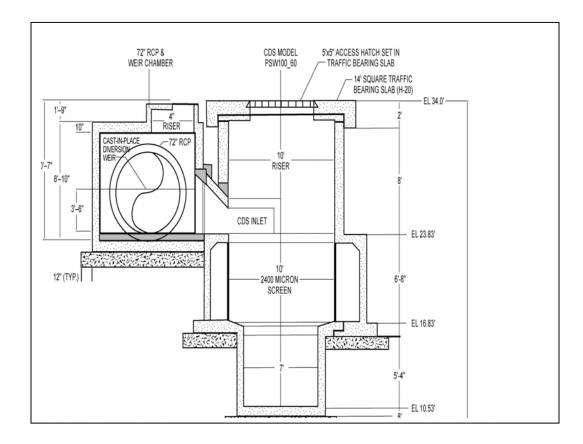


Figure 1 - Site plan showing the drainage basin (red outline) and other features

The remainder of the watershed includes multifamily and residential land uses as well as a golf course major urban thoroughfares and (Figure 1). As part of the Broadway Outfall Storm water Retrofit Project a Model PSW100 60 (0.906 cms (32 cfs) capacity) Continuous Deflective Separation (CDS) unit was installed in front of an excavated sediment sump followed by a shallow linear extending approximately marsh, 152.4 meters (500 feet) downstream from the unit. For the first year of the monitoring project, strong storm surges uprooted the marsh vegetation and created an open water area acting like a shallow pond. Planting was repeated several times, but the plants could never withstand the storm water pulses and were always uprooted in a short period of time. The vegetation planted on the 4:1 side slopes to the marsh was compromised by landscaping practices and were either mowed over or severely pruned.

A CDS unit is an underground stormwater treatment device used to capture gross pollutants in urban areas by intercepting storm runoff in the conveyance pipe system. The mechanism by which the unit separates and retains gross solids is by deflecting the inflow and associated pollutants away from the main flow stream into a pollutant separation and containment chamber. A vertical cross section view (Figure 2) shows the dimensions of the CDS unit installed at the Broadway Outfall.

When the unit reached its full storage capacity (about 1.83 m (6 ft) deep) the containment chamber was cleaned out with a vactor truck and the gross solids were sent to a landfill or disposed of in some other appropriate manner. Gross solids have not usually been measured in storm water studies since they are not included in the water collected using automated water quality samplers. These samplers generally exclude solids including trash, litter, debris, leaves and sediments larger than 64 microns, which are the kinds of pollutants that CDS units are designed to capture. This makes comparison with traditional stormwater inflow-outflow studies difficult.

Figure 2 - A vertical cross section view of the CDS unit

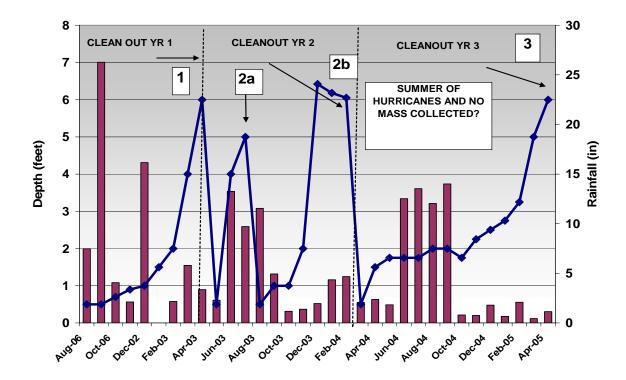
Methods

Hydrology Measurements were calculated using velocity meters, water level sensors, tipping bucket rain gauges and appropriate weirs and formulas. This information was stored in data loggers until retrieved and downloaded into spreadsheets to be processed into tables and figures. Bypass flow over a diversion weir was also measured.

Water quality was measured by taking flow-weighted samples (based on water level) for both storm flow and base flow using automated refrigerated samplers. Measurements were made in front of and after the CDS unit.

Gross solids were analyzed each time the unit was vacuumed out. The material in the unit, excluding the litter, was measured monthly and cleaned out when the material was about 5 to 6 feet deep. The floatable litter was skimmed off the top each month and air dried in meshed bags to be combined with the litter extracted from the mass (sediment and debris) at the time of cleanout when all the litter was sorted and weighted by category. The rest of the mass was analyzed using methods developed for soil samples. Representative samples taken at each 0.30 meter (1 ft) depth were collected during cleanout (one 2-liter aliquot taken from each side of the containment chamber at each depth). Each side was composited separately into one sample for the two samples sent to the laboratory for analysis. These two sample results were averaged for this report.

Results and Discussion


Gross Solids Compared to Rainfall

Gross solids, collected in devices such as CDS units, are the solid material including trash, litter, debris and sediments larger than 64 um that are not effectively measured using automatic water quality samplers. Yet these pollutants degrade aquatic habitat, cause visual blight, smother productive sediments, leach harmful pollutants, and can cause unpleasant odors. Litter includes human derived trash, such as, paper, plastic, Styrofoam, metal and glass. Debris consists of organic material including leaves, branches, seeds, twigs, and grass clippings. Coarse sediments are inorganic breakdown products from soils, pavement or building material. All these pollutants are often discharged as bed loads to rivers, lakes and streams. These are the sediments that build up in storm water ponds and will one day have to be dredged or become a pollution source. They include the material that forms deltas and covers productive bottom sediments creating problems in natural water bodies that require multi-million-dollar restoration efforts, especially in streams and lakes.

The material collected by the CDS unit for the Broadway Outfall monitoring effort was quantified on a yearly basis with representative samples collected each time the unit was vacuumed out. The CDS unit collected the majority of the sediment and debris during a two-month period and for the rest of the time period (typically 8 to 13 months) only a minimal change was measured inside the unit (Figure 3). The data presented here cover four cleanout events occurring within a three-year period. One of the difficulties in monitoring the site was that the material had to be removed from the CDS unit when it reached its capacity of 1.83 m (6ft) and this did not occur at regular intervals. In order to make comparisons to other parameters, especially water quality, the time periods were roughly divided into yearly segments (from March to March of each year) as follows:

First Cleanout - Installation of the CDS unit was completed in November of 2001 and the first cleanout was performed on June 25, 2002 when the mass of material reached the capacity of the unit. This was eight months after installation and four months before the monitoring project was initiated. The equipment to monitor water quality and hydrology was installed and these measurements were begun in November 2002.

Second Cleanout – On April 16, 2003, ten months after the first cleanout, the unit once again reached capacity. In this cleanout the volume of material removed was 6.54 m³ (231 ft³). This was the first time the material was analyzed for the constituents in the mass collected by the CDS unit and compared to the available six months of water quality data collected for both storm and base flow to be discussed later. This is referred to as Cleanout Year 1 in the tables and figures.

Figure 3 - Accumulation of sediment and debris collected in CDS unit compared to monthly rainfall

Third Cleanout –Three months later on, July15, 2003, the unit was once again almost full and the material removed. In this cleanout 7.36 m³ (260 ft³) was vacuumed out of the unit. Since there were two cleanout events during this year, this is referred to in the tables and figures as cleanout year 2a.

Fourth Cleanout – Although the CDS unit had reached capacity again by December 2003 (a five month interval), the unit was not cleaned out until February 26, 2004. It is obvious from Figure 3 that some of the material was scoured out and passed downstream indicating the importance of performing maintenance in a timely manner. This is referred to as Cleanout year 2b and the volume of material removed was 7.36 m³ (260 ft³).

Fifth Cleanout – It took over one year before the unit needed to be cleaned out again on March 20, 2005. It should be noted that during the summer of 2004, this part of Florida experienced three large hurricanes and the unit collected no material during these severe storms, unlike the above average rainfall the previous summer which had completely filled the CDS unit with sediment and debris in only three months. This final interval is referred to as Cleanout Year 3 and the volume of material removed was 6.82 m³ (242 ft³).

Summary - Although it appears from year one and year three data that February through April produce the most material in the unit, this was not true for year 2. Of some interest is that during the summer of intense hurricanes, no material was collected. Although the water budget calculated for this project is not discussed in this paper, it

should be mentioned that during the rainy summer season of 2004, 58 percent of the storm flows bypassed the CDS unit while in 2003 only 38 percent did so, which could have affected the accumulation rates. Also in Figure 3, it appears that the unit collects more material during months with low rainfall amounts than it does when rainfall is high and intense storms are the norm. It should be noted that a much larger unit was recommended for this 53 hectare drainage basin, but the terrain was too flat to accommodate the larger unit.

Gross Solids Compared to Water Quality

The material collected in the CDS unit for each cleanout indicates considerable differences in concentrations between years as well as samples analyzed by different laboratory methods (Figure 4). The samples were also compared to average water quality for both storm and base flows during the interval and these results are discussed later.

Gross Solids - When the gross solids (the solid bars in Figure 4) are compared for the four cleanout events, year 3 exhibits significantly greater concentrations of pollutants and in almost all cases the sieved samples for all events have higher concentrations than the sample analyzed without sieving (a whole sample). For year one, the analysis was only conducted on sieved samples, which in this study mostly separated the leaves from the sediments. For year 2a, only a whole sample was analyzed. In years 2b and 3, both the sieved and whole samples were compared.

Considering the heterogeneities associated with large particles which increase variability, concentrations for each cleanout showed fairly consistent results for all gross solid samples of the same type until the final cleanout period. For year 3, concentrations were significantly higher with the exception of the nutrients in the whole sample. Usually two particle sizes were analyzed and 60 to 80 percent of the sample was for the largest particle size which included mostly leaves (Rushton 2006), (Space constraints for this paper preclude a discussion of the particle size analysis). Also these analyses are preliminary and a more complete evaluation of the data for year three with a comparison of results from two different laboratories on the same samples may provide more insight and change some of the results.

APPENDIX I

July 6, 2006

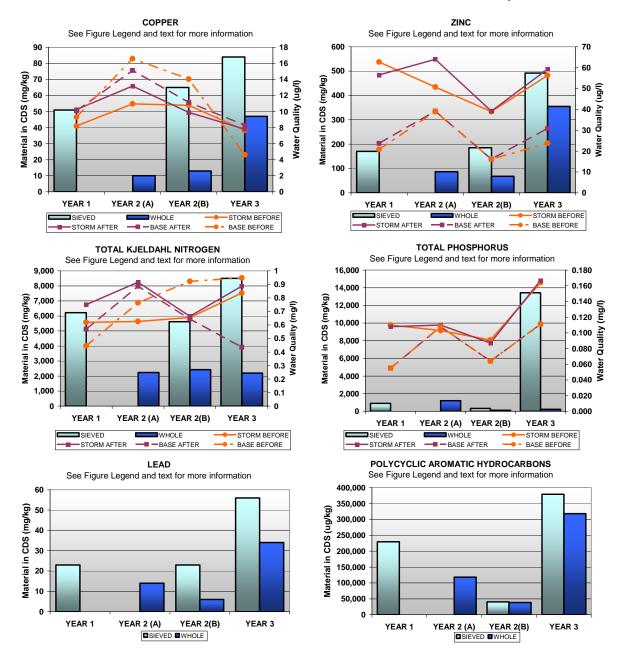


Figure 4 - Concentrations of pollutants in gross solids compared to the average water quality measured in storm flow and base flow during the sampling intervals. Key: BARS=constituent concentrations in the material collected by the CDS unit, LINES= average water quality concentrations measured during the same months as the material was collected in the CDS unit. SOLID LINES=storm flow samples. DASHED LINES=base flow samples. ORANGE CIRCLES=water quality before entering the CDS unit. MAROON SQUARES=water quality downstream of the CDS unit.

The PAHs were also measured at higher concentrations in the collected mass during year 3. In the early years, they were measured at almost the same concentrations as had been measured in the sediments at the end of the pipe before the project started (Rushton 2004), indicating that the CDS unit is removing these potentially carcinogenic particles from the storm water flow stream. Absorbent bags designed to remove PAHs were put in the CDS unit after each cleanout. There were some problems with the bags splitting open or sometimes floating back out into the storm sewer pipe and once one was even found in the pond. This could present a measurement problem especially if some of the spilled material was measured in samples raising concentrations. However, leaves and other organic particles are also effective for absorbing PAHs and this could possibly explain the extremely high concentrations measured in the mass.

The disposal of the material collected in CDS units is of some concern. The copper and lead measured for the first two years were well below the levels considered possibly toxic (> 34 mg/kg for copper and > 46 mg/kg for lead) and only in the third year, were concentrations measured above levels where they might cause problems to benthic organisms. The results for zinc were similar, although the sieved samples reached levels where they might cause problems (> 150 mg/kg), but of greater concern the sieved samples were above the probable toxic level (> 410 mg/kg). The sediment quality guidelines are taken from NOAA (1999).

The PAHs measured in the mass collected by the CDS unit present a more serious disposal problem. Concentrations were always higher than the possible toxic level (> 4,022 ug/kg) and also greatly exceeded the probable toxic level (> 44,792 ug/kg). PAHs do not easily dissolve in water, which is one reason no water quality data are shown in Figure 4. PAHs tend to adhere to solid particles and settle to the bottom of rivers or lakes. PAHs have been identified as a serious problem in Hillsborough Bay (Grabe and Barron 2003) and collection units such as a CDS combined with proper disposal may help reduce this problem. These pollutants are a great concern since the plants and animals living on the land or in water (ATSDR 2001). Breakdown in soil and water generally takes weeks to months and is caused primarily by the action of microorganisms. More study is needed to determine the most cost effective method for treating and disposing of this material.

Water Quality – Flow weighted water quality samples were collected for most storm events and base flow samples were collected over several days about every two weeks to measure differences between the inflow and outflow water quality concentrations (Figure 4). Only those constituents that were also measured in the sediments are discussed in this paper. No water quality is shown for lead because most of the samples were below the laboratory limit of detection. Of some concern, was that water sitting in the CDS unit would increase nutrient concentrations because organic leaves and other debris are known to leach nutrients as they decompose (Strynchuk *et al.* 2000 and others).

APPENDIX I

Although no statistical analysis has been performed, there is no consistent or obvious data in this study to support the hypothesis that nutrients are being increased in concentration as water passes through the unit. One reason that there may be so little difference between the water quality before and after it enters the unit is that the water has been associated with the solids during the flow down the pipe and the residence time of the water in the CDS unit is too short to change the concentrations. A different sampling scheme with fresh leaves and a more controlled timing might have produced entirely different results than these concentrations averaged on a yearly basis.

Litter (Trash)

The litter was collected, air dried, weighed and sorted for each cleanout period (Table 1). The samples include the litter that had been skimmed off each month as well as the litter retrieved from the mass of material removed by the vacuum truck at the time of clean out. Although the amount of litter is small compared to the leaves and heavy sediments, it is an eye sore and has the potential to impact wildlife as well as leach pollutants. Plastics were measured more often than any other litter category, but Styrofoam was also found in large quantities.

During cleanout period 2b there is a question about whether the City of Temple Terrace personnel left us all the litter skimmed off the top each month or followed their normal procedure from the cleanout of their other CDS units and took it off to the landfill. At any rate much less litter was collected during this 10 month period than during the two previous collection intervals, which had covered much shorter time periods. Year 3 data are not available at this time. The amount of litter collected by the CDS unit during each cleanout was quite small (6 to 17 ft^3) compared to the amount of leaves and sediments removed from the CDS unit (182 ft3 to 260 ft^3).

CATEGORY	CI	EANO	UT YR	1	CL	EANOL	JT YR	2a	CL	EANOL	JT YR	2b
	KG	LB	M ³	FT ³	KG	LB	M ³	FT ³	KG	LB	M ³	FT ³
Plastic	13.91	30.66	0.25	8.79	19.21	42.34	0.33	11.76	5.33	11.76	0.13	4.44
Aluminum	1.65	3.63	0.04	1.52	2.67	5.88	0.05	1.75	0.74	1.63	0.01	0.23
Styrofoam	0.39	0.85	0.08	2.91	0.40	0.89	0.03	0.99	0.23	0.51	0.05	1.64
Miscellaneous	0.93	2.05	0.00	0.11	2.62	5.78	0.01	0.48	0.49	1.07	0.05	1.65
Wood	1.65	3.63	0.04	1.52	2.67	5.88	0.05	1.75	0.00	0.00	0.00	0.00
Paper	0.41	0.91	0.00	0.04	0.00	0.00	0.00	0.00	0.09	0.20	0.00	0.12
Glass	0.10	0.23	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cig. Butts.	0.02	0.04	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fabric	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.24	0.54	0.00	0.12
TOTALS	19.05	42.00	0.42	14.91	27.56	60.77	0.47	16.73	7.12	15.71	0.23	8.20

 Table 1. Amount of litter collected in the CDS unit.

Conclusions

- A CDS unit was effective for removing leaves, large size sediment and litter from stormwater runoff.
- Highly toxic levels of PAHs were also removed from the stormwater flow stream, which would probably travel as bedloads to the river.
- No apparent differences were measured for nutrients before or after water flowed through the CDS unit, which suggests the decomposing leaves in the unit were not increasing nutrient concentrations in the water column. (Statistical analysis and a better experimental design are needed to verify this conclusion drawn from this data averaged over a long time period).
- Sieving samples into particle size cause large increases in concentrations.
- A device is needed at the entrance of the CDS unit that can close off the base flow during cleanout and that will keep the material from floating back out of the unit into the pipe during base flow.

Acknowledgements

This project including the preparation of this report was funded in part by a Section 319(h) Nonpoint Source Management Program grant from the U.S. Environmental Protection Agency through a contract with the Florida Department of Environmental Protection. The SWFWMD laboratory staff was indispensable in carefully analyzing water quality samples that could never be collected on a pre-determined schedule. Rebecca Hastings and Stan Kane as well as numerous interns collected data, repaired equipment, entered data into tables and figures, visited the site at least once a week and kept everything in working order. Their help was greatly appreciated.

References

Agency for Toxic Substances and Disease Registry (ATSDR). 2001. Polycyclic Aromatic Hydrocarbons (PAHs). <u>http://www.atsdr.cdc.gov/ToxProfiles/phs8806.html</u>

Grabe, S. A. and J. Barron. 2003. Sediment Contamination, by Habitat, in the Tampa Bay Estuarine System (1993-1999):PAHs, Pesticides and PCBs. In Environmental Monitoring and Assessment 00:1-40, 2003. Kluwer Academic Publishers, Netherlands.

National Oceanic and Atmospheric Administration (NOAA). 1999. Sediment Quality Guidelines Developed for the National Status and Trends Program. http://response.restoration.noaa.gov/cpr/sediment/sediment.html

Rushton, B.T. 2004. Broadway Outfall Stormwater Retrofit Project. Progress Report Year 1. Southwest Florida Water Management District. 2379 Broad Street, Brooksville, FL 34604.

Strynchuk, J., J. Royal, and G. England. 2000. Continuous deflection separation (CDS) unit for sediment control in Brevard County, Florida. Brevard County Surface Water Improvement, 2725 Judge Fran Jamieson Way, Suite A203, Viera, FL 32940. www.stormwaterauthority.com.

APPENDIX I

July 6, 2006

Appendix Table I.1a. Storm samples taken for four cleanout periods before and after runoff entered a CDS unit installed at
the Broadway outfall in Tampa, Florida.
STORM SAMPLES

	AMM	ONIA	NITRA	ATE +	ORGA	NIC N	TOT	AL N	ORTI	IO P	TOT	AL P	TS	S	COP	PER	ZIN	1C
	mę		mę		m		mę		m		mg		mę		ug		uç	
	934	935	934	935	934	935	934	935	934	935	934	935	935	935	934	935	934	935
	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS	BEFORE CDS	AFTER CDS
FOR CLE/															003 to fill Cl		603	003
# Samples		12	12	12	12	12	12	12	12	12	12	12	11	11	12	12	12	12
Mean	0.0690	0.0520	0.457	0.407	0.55	0.70	1.08	1.16	0.032	0.025	0.110	0.108	17.6	18.4	8.28	10.20	62.7	56.5
Median	0.0340	0.0225	0.464	0.424	0.51	0.60	1.16	1.12	0.031	0.020	0.116	0.102	14.3	15.7	9.18	9.16	47.8	54.4
St. Dev.	0.0774	0.0612	0.283	0.239	0.30	0.38	0.26	0.32	0.025	0.019	0.054	0.056	9.5	12.0	3.10	4.84	31.1	23.6
Max	0.2050	0.1600	1.010	0.819	1.28	1.30	1.45	1.73	0.081	0.063	0.195	0.181	34.4	49.4	13.70	18.80	120.0	100.0
Min	0.0060	0.0060	0.017	0.015	0.17	0.26	0.59	0.66	0.005	0.005	0.036	0.028	6.3	7.6	3.89	3.89	34.1	29.5
C.V.	1.1222	1.1776	0.62	0.59	0.55	0.54	0.24	0.27	0.79	0.75	0.49	0.52	0.54	0.65	0.37	0.47	0.50	0.42
FOR CLEA	NOUT YE	AR 2A (5-1	-03 to 7-12-	03), CDS	l unit filled ir	h short tim	e from Apr	il 2003 to	July 2003.									
# Samples		9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Mean	0.036	0.025	0.379	0.313	0.591	0.891	1.005	1.228	0.025	0.022	0.103	0.110	12.9	11.8	10.97	13.19	50.7	64.0
Median	0.016	0.018	0.402	0.295	0.598	0.746	1.030	1.070	0.022	0.019	0.083	0.095	9.1	9.7	10.60	11.70	60.2	45.1
St. Dev.	0.045	0.024	0.141	0.100	0.423	0.329	0.398	0.377	0.017	0.016	0.053	0.046	14.5	5.2	3.41	5.77	21.6	44.0
Max	0.130	0.067	0.568	0.460	1.068	1.495	1.600	1.900	0.054	0.055	0.235	0.205	50.1	18.3	18.60	25.50	74.9	147.0
Min	0.006	0.006	0.132	0.165	0.000	0.531	0.235	0.740	0.005	0.005	0.067	0.054	1.590	3.290	7.05	7.10	10.4	11.6
C.V.	1.257	0.944	0.373	0.319	0.717	0.369	0.396	0.307	0.678	0.710	0.511	0.420	1.122	0.443	0.31	0.44	0.4	0.7
FOR CLE	NOUT YE	AR 2B (8-9	-03 to 4-13	-04). CDS	l unit fills in	almost a v	ear August	t 2003 to N	l Aarch 2004.									
# Samples		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Mean	0.019	0.020	0.453	0.384	0.639	0.644	1.110	1.048	0.024	0.021	0.091	0.087	12.2	10.8	10.78	9.89	38.9	39.1
Median	0.016	0.015	0.424	0.312	0.558	0.562	1.090	1.058	0.020	0.021	0.078	0.070	10.7	10.8	7.96	7.10	35.2	35.8
St. Dev.	0.021	0.023	0.216	0.196	0.248	0.267	0.231	0.245	0.021	0.017	0.032	0.036	6.0	4.5	11.29	12.32	17.5	16.5
Max	0.101	0.095	0.833	0.761	1.344	1.312	1.660	1.600	0.088	0.062	0.160	0.150	25.7	19.3	49.90	60.10	70.3	77.9
Min	0.003	0.003	0.007	0.006	0.345	0.395	0.711	0.600	0.005	0.002	0.048	0.043	4.5	4.3	1.50	1.50	16.4	18.6
C.V.	1.149	1.132	0.477	0.512	0.388	0.414	0.208	0.234	0.849	0.825	0.354	0.408	0.494	0.417	1.05	1.25	0.451	0.421
FOR CLEA	NOUT YE	AR 3 (6-5-0)4 to 4-27-0	5) Takes o	l over a full v	ear to fill (DS unit fre	om March	2004 to Ap	ril 2005.								
# Samples		48	48	48	48	48	48	48	48	48	48	48	48	48	48	48	48	48
Mean	0.082	0.077	0.408	0.405	0.753	0.810	1.244	1.291	0.085	0.078	0.164	0.167	23.7	21.6	7.65	7.80	56.3	59.3
Median	0.039	0.035	0.328	0.323	0.639	0.694	1.055	1.125	0.046	0.046	0.113	0.103	15.9	16.4	5.70	5.38	43.2	42.3
St. Dev.	0.104	0.091	0.344	0.257	0.591	0.396	0.709	0.494	0.154	0.036	0.153	0.092	35.6	27.1	5.70	5.58	39.0	50.6
Max	0.415	0.738	1.440	1.310	2.809	3.137	4.300	4.320	0.914	1.340	1.040	1.480	233.0	158.0	34.20	32.00	212.0	267.0
Min	0.003	0.003	0.011	0.048	0.000	0.000	0.124	0.590	0.020	0.005	0.051	0.054	0.3	2.1	1.50	3.36	11.4	13.9
C.V.	1.269	1.185	0.843	0.636	0.784	0.489	0.570	0.382	1.823	0.461	0.937	0.554	1.499	1.256	0.74	0.72	0.693	0.853

APPENDIX I

July 6, 2006

Appendix Table I.2a. Base flow samples taken for four cleanout periods before and after runoff entered a CDS unit installed at the
Broadway outfall in Tampa, Florida.

BASE FLOW SAMPLES

	AMM	ONIA	NITRA	ATE +	ORGA	NIC N	TOT	AL N	ORT	HO P	TOT	AL P	TS	S	COP	COPPER		NC
	m		mį		m		m	g/I	m	g/I	m		m		ug		uį	
	934	935	934	935	934	935	934	935	934	935	934	935	935	935	934	935	934	935
	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER	BEFORE	AFTER
	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS	CDS
															2003 to fill C		00	00
# Samples	23 0.0170	23	23	23	23	23	23	23	23	23	23	23	23	23	23 9.34	23	23	23
Mean	0.0170	0.0378	1.084 1.050	0.824 0.878	0.428 0.358	0.531 0.471	1.529 1.450	1.393	0.023 0.018	0.018 0.016	0.053 0.040	0.055 0.052	3.7 2.0	5.1 3.7	9.34 8.48	10.10 7.30	20.8 18.1	23.7
Median	0.0140	0.0290 0.0455	0.294	0.878	0.358	0.471	0.276	1.300 0.294	0.018	0.016	0.040	0.052	2.0 4.7	3.7 3.9	8.48 6.34	7.30 6.74	13.1	17.5 18.0
St. Dev.	0.0148					0.348							4.7 21.5				-	
Max	0.0670	0.1970 0.0060	1.940 0.427	1.320 0.186	1.104 0.101	0.085	2.250 1.040	2.050 1.010	0.068 0.002	0.046 0.002	0.160 0.005	0.118 0.014	21.5 0.6	13.3 1.1	26.60 1.50	29.70 3.18	50.0 5.9	58.6 5.6
Min C.V.	0.0060	1.2028	0.427	0.186	0.101	0.085	0.18	0.21	0.002	0.002	0.005	0.014	1.29	0.76	0.68	0.67	5.9 0.6	5.6 0.8
C.V.	0.0740	1.2020	0.27	0.55	0.55	0.00	0.16	0.21	0.77	0.76	0.77	0.55	1.29	0.76	0.00	0.67	0.6	0.0
		AD 2A /E 4	02 40 7 12	02) CDS	I unit filled ir	o obort tim	l Ann	1 2002 40	1002									
# Samples		8 AK 2A (5-1	8	8 8	8	8	8	8	3uly 2003.	8	8	8	8	8	8	8	8	8
# Gamples Mean	0.030	0.040	0.593	0.438	0.733	0.846	1.356	1.324	0.027	0.018	0.091	0.108	8.9	11.6	16.60	15.13	32.0	41.2
Median	0.030	0.040	0.355	0.433	0.680	0.778	1.380	1.285	0.027	0.015	0.088	0.100	7.9	10.1	9.22	8.65	32.5	30.6
St. Dev.	0.020	0.027	0.355	0.400	0.294	0.333	0.440	0.316	0.013	0.013	0.000	0.044	4.3	5.5	23.31	18.77	10.8	27.3
Max	0.024	0.093	1.140	0.200	1.094	1.350	2.160	1.840	0.023	0.035	0.169	0.185	15.3	23.8	74.00	61.20	44.9	93.6
Min	0.006	0.005	0.269	0.002	0.426	0.490	0.760	0.800	0.005	0.005	0.046	0.052	4.3	7.3	4.21	4.58	16.4	18.5
C.V.	0.806	0.843	0.599	0.469	0.401	0.394	0.324	0.239	1.071	0.651	0.465	0.413	0.478	0.473	1.404	1.241	0.337	0.663
0.11	0.000	0.010	0.000	0.100	0.101	0.001	0.021	0.200	1.07 1	0.001	0.100	0.110	0.110	0.110	1.101		0.007	0.000
FOR CLE	ANOUT YE	AR 2B (8-9	-03 to 4-13-	-04), CDS	unit fills in	almost a v	l /ear August	2003 to N	l Arch 2004.									
# Samples		21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
Mean	0.020	0.027	0.727	0.647	0.902	0.616	1.649	1.291	0.017	0.015	0.077	0.064	5.4	4.5	14.03	11.15	16.1	16.1
Median	0.008	0.014	0.824	0.688	0.549	0.483	1.500	1.290	0.013	0.010	0.063	0.062	3.2	3.9	5.55	7.17	12.9	14.6
St. Dev.	0.022	0.039	0.361	0.251	0.927	0.247	0.905	0.200	0.016	0.014	0.035	0.027	4.3	2.9	24.65	13.06	9.3	7.5
Max	0.068	0.155	1.370	1.100	4.667	1.071	5.380	1.580	0.067	0.057	0.138	0.121	17.6	11.7	116.00	50.80	45.4	40.9
Min	0.003	0.003	0.001	0.218	0.369	0.369	0.950	0.782	0.000	0.000	0.035	0.029	1.4	1.7	1.50	1.50	5.9	7.1
C.V.	1.120	1.437	0.496	0.388	1.028	0.401	0.549	0.155	0.932	0.947	0.451	0.415	0.789	0.653	1.757	1.172	0.578	0.467
FOR CLE/	NOUT YE	AR 3 (6-5-0	04 to 4-27-0	5) Takes o	over a full y	ear to fill (CDS unit fro	om March	2004 to Ap	ril 2005.								
# Samples		16	16	16	16	16	16	16	16	16	16	16	15	15	16	16	16	16
Mean	0.131	0.095	1.261	1.538	0.817	0.341	2.209	1.974	0.070	0.068	0.114	0.111	6.7	6.5	4.62	8.30	23.8	30.8
Median	0.074	0.078	1.115	0.834	0.639	0.532	1.785	1.880	0.061	0.059	0.093	0.104	4.0	3.6	1.50	1.50	22.1	26.8
St. Dev.	0.148	0.091	0.780	1.991	0.545	1.653	0.927	0.965	0.029	0.031	0.058	0.039	5.3	7.4	8.82	21.92	17.4	21.3
Max	0.640	0.364	2.510	8.550	1.885	1.942	3.820	3.300	0.136	0.173	0.274	0.211	22.4	29.7	37.00	89.70	79.5	91.3
Min	0.010	0.011	0.432	0.287	0.314	-5.368	1.080	0.211	0.029	0.034	0.046	0.067	2.1	1.1	1.50	1.50	7.7	12.6
C.V.	1.135	0.960	0.618	1.294	0.667	4.848	0.420	0.489	0.407	0.453	0.511	0.350	0.794	1.149	1.91	2.64	0.732	0.690

SEDIMENT ANALYSIS

July 6, 2006

SEDIMEN	T SAMPLI	CONSTRU NG			
MAY	2, 2001				
FLO 936 FLO	.0 937 FLO 93	7 DUP FLO 938	FLO 939	FLO 940 FLO 941	FLO 941d
— U -	— U —	<u> </u>	— U	— u — u	370
	— Ŭ —	<u> </u>	— Ū	— U 760 I	
4,600 -	- U -	<u> </u>	2,500 I	180 I 3,700	3,300
	— U —	U — U	2,700 I	230 I 3,700	3,300
	150 I —	<u> </u>	4,100	360 I 5,300	4,700
a , <i>z</i> • •	<u> </u>	<u> </u>	1,600 I	130 I 1,900 I	-
2,700 -	<u> </u>	<u> </u>	2,300 I	180 I 2,500 I	
,	<u> </u>	<u> </u>	- U	<u> </u>	
	- 0 - 130 I -	<u> </u>	3,900	330 I 5,200	4,500
- U -	<u> </u>	<u>v – v</u>	U	<u> </u>	
-			6,800	510 9,900	8,100
- U -	<u> </u>	<u> </u>	- U	<u> </u>	
	— Ū —	<u> </u>	2,600 I	210 I 3,000	2,400
	– U –	<u> </u>	2,200 I	200 I 3,700	3,200
	140 I 95	I — U	5,200	390 7,600	6,300
1,250.00 2,92	920.00 1,720.	00 3,570.00 A	1,280.00	7,730.00 720.00	3,550.00
1.06 0	0.54 I 0.53	I — U	0.78 I	0.69 0.50 I	0.77
11.10 J 13	3.60 J 8.41	J 7.99 AJ	8.50 J	32.60 J 5.64 J	11.90
5.50 1	1.20 I 1.10	U I — U	5.00	1.10 I 2.00	5.10
	270.00 J 659.0		5,790.00 J	2,930.00 J 1,110.00 J	3,860.00
	3.40 2.80		21.20	5.40 I 10.90	15.10
	4.70 4.00		27.60	26.50 41.50	174.00
	3.00 I —	<u> </u>	— U	8.60 — U	
24.00 -	— U —	<u> </u>	37.00	6.90 I 39.00	54.00
130.0 J 8	82.0 80	A 120	290.0 J	180.00 150 J	270
1500.0 23	300.0 2300) A 200	260.0 JA	1200.00 330 J.A	180
— U -	— U —	U — U	— U	— u — u	-
— U -	— U —	U — U	— U	— u — u	
— U -	— U —	U — U	— U	<u> </u>	-
— U -	— U —	U — U	— U	— u — u	-
— U -	— U —	U — U	— U	— u — u	-
— U -	— U —	U — U	— U	— U — U	
— U -	— U —	υ — υ	— U	— U — U	
-	— U —	υ — υ		— U — U	
•	— U —	u — n	— U	<u> </u>	
<u> </u>	<u> </u>	<u> </u>	— U	<u> </u>	_
	<u> </u>	<u> </u>	— U	<u> </u>	
— U -	<u> </u>	<u> </u>	— U	<u> </u>	_
15 Is Is I sha minimum	detection limit				
our to are minimum	a desection muit.				-
n s ual to t 1 limit.	he minimun	he minimum detection limit.	he minimum detection limit.	he minimum detection limit.	he minimum detection limit.

July 6, 2006

	SEDIM													
		AU	JG	UST 1	4,	2002								
CONSTITUENT	site>	FLO 935		FLO 936		FLO 937		FLO 938		FLO 939	1	FLO 940	FLO 94	1
SEMI-VOLATILE ORGANIC POLLUTANTS														
cenaphthene	ug/kg	83	I		U		U		U		U	na	-	-
hthracene	ug/kg	320	Ι		\mathbf{U}		\mathbf{U}		U	—	U	na		
Senzo(a)anthracene	ug/kg	3,000		640		490		520		530		na		_
Benzo(a)pyrene	ug/kg	3,800		960		560		810		770		na		_
Senzo(b)fluoranthene	ug/kg	7,700		1,800 580		1,000	т	1,500		1,400		na		
Senzo(k)fluoranthene Senzo(g,h,i)perylene	ug/kg ug/kg	2,100 2,100		580		320 360	I	480 600		550 560		na na		-
Bis(2-ethylhexyl)phthalate	ug/kg	3,000		390	U	300	U		U	500	U	na		
Butyl benzyl phthalate	ug/kg	5,000	U		Ū		U		Ū	530	I	na		
Chrysene	ug/kg	5,900		4	~	760		980	~	920	-	na		
Di-n-octyl phthalate	ug/kg	250	Ι	1,300	U		U	_	U	_	U	na	_	
Dibenzo(a,h)anthracene	ug/kg	580		_	\mathbf{U}	100	Ι	150	Ι	130	Ι	na		
luoranthene	ug/kg	8,900		1,700		1,300		1,300	U	1,200		na		
lorene	ug/kg	140	Ι		\mathbf{U}	370		—	U	—	U	na		
ndeno(1,2,3-cd)pyrene	ug/kg	2,300		620		—	U	610		500		na		
Phenanthrene	ug/kg	2,500		570		680		380		410		na		
yrene	ug/kg	7,500		1,600		1,200		1,200		1,200		na		_
METALS,														-
OTAL RECOVERABLE														_
Aluminum_308	ug/kg	na		na		na		na		na		na	na	
admium	ug/kg	na		na		na		na		na		na	na	
Chromium	ug/kg	na		na		na		na		na		na	na	
Copper	ug/kg	na		na		na		na		na		na	na	
ron_271	ug/kg	na		na		na		na		na		na	na	
.ead	ug/kg	na		na		na		na		na		na	na	
/langanese	ug/kg	na		na		na		na		na		na	na	
lickel Linc	ug/kg ug/kg	na na		na na		na na		na na		na na		na na	na na	_
TOTAL KJELDAHL	-gring													-
TROGEN - SOIL	me er Ar er													
	mg/kg	na		na		na		na		na		na	na	_
OTAL PHOSPHOROUS - Soil														
otal - P	mg/kg	na		na		na		na		na		na	na	
DRGANONITROGEN AND PHOSPHORUS PESTICIDES														
Chlorpyrifos Ethyl	ug/kg	11.00	J		\mathbf{U}	—	U	—	U		U	na	-	
Diazanon Parathion Methyl	ug/kg ug/kg		U U		U U		U U		U U		U U	na na	\pm	
ORGANOCHLORINE PESTICIDES-SOIL														_
Aldrin	ug/kg		U	_	U		U		U		U	na	-	
Chlordane	ug/kg	_	U		U		U	9.2	I		U	na	1 _	
DD-p,p'	ug/kg	_	U	_	U	_	U		Ū	_	U	na	- 1	
DDE-p,p'	ug/kg		Ū		U		U		Ū		Ū	na	_	
DT-p,p'	ug/kg		U		\mathbf{U}		\mathbf{U}		U		U	na		
Dieldrin	ug/kg		U		\mathbf{U}		\mathbf{U}		\mathbf{U}		\mathbf{U}	na		
Endosulfan Sulfate	ug/kg		U		\mathbf{U}		\mathbf{U}		\mathbf{U}		\mathbf{U}	na		_
Aethoxychlor	ug/kg	13.00	Ν	6.7	Ν		U		\mathbf{U}		U	na		
PCB-1248	ug/kg		U		U	<u> </u>	U		U		U	na	+	
PCB-1260	ug/kg		U		U		U		U		U	na		
(EY:														
Value reported is the mean of two														

July 6, 2006

BROADWAY OUTFALL SEDIMENT SAMPLING August 26, 2004

CONSTITUENT	site>	EL C. 032		FLO 936		FLO 937		FLO 938		FLO 939		FLO 940	FLO 941
CONSTITUENT	site	FLO 936		DUP		FLO 937		FLO 938		FLO 939		FLO 940	FLO 941
SEMI-VOLATILE ORGANIC							-						
POLLUTANTS		1PM		1:20 PM		11:35AM		11:15AM		10:30AM			
Acenaphthene	ug/kg	83	U	83	U	79	U	77	U	76	U	na	na
Anthracene	ug/kg	83	U	150	I	79	U	77	U	76	U	na	na
Benzo(a)anthracene	ug/kg	540		910		320		520		400		na	na
Benzo(a)pyrene	ug/kg	710		1100		460		800		510		na	na
Benzo(b)fluoranthene	ug/kg	970		1500		650		1200		630		na	na
Benzo(k)fluoranthene	ug/kg	760		1100		540		870		510		na	na
Benzo(g,h,i)perylene	ug/kg	460		690		310	Ι	550		320		na	na
Bis(2-ethylhexyl)phthalate	ug/kg	500	U	500	U	2500		460	U	450	U	na	na
Butyl benzyl phthalate	ug/kg	83	U	83	U	79	U	77	U	76	U	na	na
Chrysene	ug/kg	930		1500		650		1100		600		na	na
Di-n-octyl phthalate	ug/kg	83	U	83	U	79	U	77	U	76	U	na	na
Dibenzo(a,h)anthracene	ug/kg	83	U	83	U	79	U	77	U	76	U	na	na
Fluoranthene	ug/kg	1500		2500		860		1400		1000		na	na
Florene	ug/kg	83		83	U	79	U	77	U	76	U	na	na
Indeno(1,2,3-cd)pyrene	ug/kg	420		640		290	I	510	~	300	I	na	na
Phenanthrene	ug/kg	420		920	-	290	I	330		280	I	na	na
Pyrene	ug/kg	1200		2100	*1	700	*1	1200	*1	810	J	na	na
1 310110	uging	1200		2100		700	1	1200	1	010		na	
METALS, TOTAL RECOVERABLE													
Aluminum 308	ug/kg	7970		7230	A	6940		5210		4400			
Cadmium		0.94		0.52	A	0.35		0.12	I	0.13		na	na
Chromium	ug/kg ug/kg				-			14	1	16.5		na	na
	00	29.9	Ŧ	27	A	26.2					T T	na	na
Copper	ug/kg	1.6	Ι	1.7	I	3.2		3.3		0.79	U	na	na
Iron_271	ug/kg	2880		2750	A	3000		2430		1770		na	na
Lead	ug/kg	4		4.2	A	4		7.6		5.3		na	na
Manganese	ug/kg	23	-	17.9	A	6.4		8.5		7.5		na	na
Nickel	ug/kg	4.7	I	4.7	I	5.71	J	3.7	I	2.8	I	na	na
Zinc	ug/kg	9.3	J	9.4	AJ	9.2	J	11.5		7.5	Ι	na	na
TOTAL KJELDAHL NITROGEN - SOIL													
TKN	mg/kg	110	*1	78	*1	120	*1	250	*1	170	*3	na	na
TOTAL PHOSPHOROUS - SOIL													
Total - P	mg/kg	170		1400		1300		260		250	A	na	na
	00												
ORGANONITROGEN AND PHOSPHORUS PESTICIDES													
Chlorpyrifos Ethyl	ug/kg	4.5	U	2.3	U	2.2	U	2.1	U	2.1	U	na	na
Diazanon	ug/kg	4.5	UJ	4.5	*2	4.3	*2	4.3	*2	4.2	*2	na	na
Parathion Methyl	ug/kg	6.8	U	6.8	U	6.5	U	6.4	U	6.2	U	na	na
ORGANOCHLORINE PESTICIDES-SOIL	-												
Aldrica				0.17		0.12		0.12		0.12			
Aldrin	ug/kg	1.4	U	0.45	U	0.43	U	0.43	U	0.42	U	na	na
	ug/kg	6.8	U	6.8	U	6.5	U	11	Ι	9.3	Ι	na	na
Chlordane		0.91	U	0.91	U	0.87	U	0.85	U	0.83	U	na	na
DDD-p,p'	ug/kg		U	0.91	U	0.87	U	0.85	U	0.83	U	na	na
DDD-p,p' DDE-p,p'	ug/kg	0.91											
DDD-p,p' DDE-p,p' DDT-p,p'	ug/kg ug/kg	1.4	UJ	1.4	*2	1.3	*2		*2	0.83	U	na	na
DDD-p,p' DDE-p,p' DDT-p,p' Dieldrin	ug/kg ug/kg ug/kg	1.4 0.45	UJ U	1.4 0.45	U	0.43	U	0.43	U	1.2	*2	na	na na
DDD-p,p' DDE-p,p' DDT-p,p'	ug/kg ug/kg	1.4	UJ	1.4	-	-		0.43				na	
DDD-p,p' DDE-p,p' DDT-p,p' Dieldrin	ug/kg ug/kg ug/kg	1.4 0.45	UJ U	1.4 0.45	U	0.43	U	0.43	U	1.2	*2	na	na
DDD-p.p' DDE-p.p' DDT-p.p' Dieldrin Endosulfan Sulfate	ug/kg ug/kg ug/kg ug/kg	1.4 0.45 0.91	UJ U *2	1.4 0.45 0.91	U *2	0.43 0.87	U *2	0.43 0.85	U *2	1.2 0.83	*2 *2	na na	na na

KEY:
A - Value reported is the mean of two or more determinations
I - Value reported is less than the minimum quantitation limit, and greater than or equal to the minimum detection limit.
J - Estimated Value
N - Presumptive evidence of presence of material.
U - Material was analyzed but not detected; value reported is the minimum detection limit.
*1 - MS,RPD (Batch failure)
*2 - UJ,CCV (Batch recovery Failure)
*3 - AJ,MS,RPD (Batch failure)

Table J-1. Particle size analysis for the ditch sediments in year 2001 before the
pond was constructed and in year 2004 in the pond three years after construction.
Particle size in millimeters.

PAR	RTICLE :	SIZE AN	IALYSIS	S (%)	
Location==>	FLO 935	FLO 936	FLO 937	FLO 938	FLO 939
PARTICLE SIZE		Y	EAR 200	1	
>2.0	46.0	26.0	1.2	0.3	38.0
0.5 - 2.0	39.4	26.4	3.9	0.4	28.3
0.25 - 0.5	5.9	10.1	8.2	5.6	9.4
0.125 - 0.25	4.1	17.8	38.4	42.9	11.5
0.063 - 0.125	1.2	4.0	8.6	8.8	3.6
<0.063	3.0	15.8	39.7	42.0	9.2
TOTAL PERCENT	99.7	100.0	100.0	100.0	99.9
PARTICLE SIZE		Y	EAR 200	4	
>2.0	53.0	1.4	1.0	1.0	2.8
0.5 - 2.0	15.0	9.0	0.9	4.2	3.6
0.25 - 0.5	14.5	12.4	9.8	11.4	17.6
0.125 - 0.25	10.2	40.1	44.2	45.6	49.0
0.063 - 0.125	2.2	10.2	10.5	16.9	15.0
<0.063	5.1	27.0	33.7	20.9	12.0
TOTAL PERCENT	100.0	100.1	100.0	100.0	99.9

July 6, 2006

APPENDIX K

MACROINVERTEBRATES

_	2	3	4	5	6	7	8
Taxa	<u>(935)</u>	<u>(936)</u>	<u>(937)</u>	<u>(938)</u>	<u>(939)</u>	<u>(940)</u>	<u>(941)</u>
PHYLUM MOLLUSCA							
CLASS GASTROPODA							
ORDER BASOMMATOPHORA							
FAMILY ANCYLIDAE			-				
Hebetancylus excentricus	0	0	0	0	0	1	0
FAMILY PLANORBIDAE							
Micromenetus floridensis	1	0	0	0	0	0	0
FAMILY PHYSIDAE							
Physella	1	0	0	0	0	0	0
PHYLUM ANNELIDA							
CLASS OLIGOCHAETA							
FAMILY ENCHYTRAEIDAE							
cf. Enchytraeidae	0	2	0	0	0	0	0
FAMILY TUBIFICIDAE							
Tubificidae	6	44	0	4	10	5	17
FAMILY NAIDIDAE							
cf Pristina synclites	0	1	0	0	0	0	0
Dero cff nivea	0	0	0	0	0	5	0
Dero cf flabelliger	0	0	0	0	U	5	0
Dero cff digitata	1	0	0	0	0	4	0
	0	0	1	1	0	33	0
cf. Haemonais waldvogeli	-	-	-	-	-		-
cf. Pristinella	0	1	0	0	0	0	0
PHYLUM UNIRAMIA							
SUBPHYLUM HEXAPODA							
CLASS PTERYGOTA							
ORDER DIPTERA	0	0	0	0	0	,	0
Diptera (larvae) FAMILY CHIRONOMIDAE	0	0	0	0	0	1	0
	,	0	0	0		,	0
Tanypus Orthogda d'incer	1	0	0	-	0,	1	0
Orthocladiinae	0	0	0	0	1	0	0
Chironominae (pupae)	0	1	0	0	0	0	0
Chironomus	5	0	3	3	0	38	0
Goeldichironomus	0	0	0	1	0	0	0
Goeldichironomus	0	1	0	0	0	1	0
holoprasinus							
Goeldichironomus cff	0	0	0	0	0	2	0
holoprasinus							
Keifferulus dux/pungens	0	0	0	1	0	2	0
Polypedilum illinoense gp.	0	2	2	0	1	0	0
Polypedilum tritum	0	1	0	0	0	0	0
Chironomini (pupae)	1	0	0	0	0	0	0
Tanytarsus	0	0	0	0	0	3	0
1 unytur sus	V	V	V	V	V	5	
TOTALS	16	53	6	10	12	93	17

Table K-1. Phylogenetic list of taxa with counts for each station. Broadway outfall02-May-01

Table K-2. Phylogenetic list of taxa with counts for each station. Broadway outfall 14-Aug-02

	2	3	4	5	6	7	8
<u>Taxa</u>	<u>(935)</u>	<u>(936)</u>	<u>(937)</u>	<u>(938)</u>	<u>(939)</u>	<u>(940)</u>	<u>(941)</u>
PHYLUM MOLLUSCA							
CLASS GASTROPODA							
ORDER BASOMMATOPHORA							
FAMILY PLANORBIDAE							
Biomphalaria glabrate	1	1	1	0	0	na	0
FAMILY AMPULLARIDAE	2		1	0	0	7568	
	0	0	0	,	,		-
Pomacea paludosa	0	0	0	1	1	na	0
PHYLUM ANNELIDA							
CLASS OLIGOCHAETA							
FAMILY TUBIFICIDAE							
Tubificidae	30	0	0	0	0	na	0
FAMILY NAIDIDAE							
cf Pristina	0	1	0	0	0	na	0
Dero	2	0	0	0	0	na	0
Dero flabelliger	0	0	1	0	2	na	0
Dero cf flabelliger	0	1	0	0	0	na	0
Dero digitata complex	173	3	8	0	39	na	0
Dero cf. furcata	3	0	0	0	0	na	0
cf. Pristinella	0	0	0	0	3	na	0
PHYLUM CRUSTACEA							
CLASS BRANCHIOPODA							
ORDER CLADOCERA							
FAMILY MACROTHRICIDAE							
Ilyocryptus	0	0	1	0	0	na	0
PHYLUM UNIRAMIA			<u> </u>		<u> </u>		<u> </u>
SUBPHYLUM HEXAPODA							
ORDER DIPTERA							
FAMILY CHIRONOMIDAE							
Tanypus	1	0	0	0	0	na	0
Chironomus	2	0	0	0	0	na	0
TOTALO	040				1.5		
TOTALS	212	6	11	1	45	0	0

 Table K-3. Phylogenetic list of taxa with counts for each station. Broadway outfall 04-May-04 – See Figure 2 for station locations.

4-May-04		3	4	5	6	6
Taxonomic G	roup/Identified Taxa	FL0936	FL0937	FL0938	FL0939	FL0939
						dup
PHYLUM AN	INELIDA					
CLASS OLIC	JOCHAETA					
FAMILY L	UMBRICULIDAE					
	Lumbriculidae	0	0	0	0	0
FAMILY E	NCHYTRAEIDAE					
	cf. Enchytraeidae	4	0	0	0	0
FAMILY T	UBIFICIDAE					
	Tubificidae	252	2228	1033	257	380
FAMILY N	AIDIDAE					
	Pristina	0	0	89	0	0
	cf. Pristina	0	0	0	34	12
	Dero cf. flabelliger	4	0	0	0	0
	Dero digitata complex	108	911	1712	794	726
	cf. Haemonais waldvogeli	0	34	0	0	12
	cf. Pristinella	16	0	59	11	0
CLASS HIRI	JDINEA					
FAMILYG	LOSSIPHONIIDAE					
	Glossiphoniidae	12	169	30	11	12
FAMILYH	IRUDINIDAE					
	Hirudinidae	0	34	0	11	12
PHYLUM MO	DLLUSCA					
CLASS GAS	TROPODA					
	Gastropoda	0	5	3	0	0
ORDER ME	SOGASTROPODA					
FAMILY V	IVIPARIDAE					
	Viviparus georgianus	0	0	0	0	0
FAMILY T	HIARIDAE					
	Melanoides	0	0	108	0	0
	Melanoides tuberculata	0	75	163	280	100
	SOMMATOPHORA					
	NCYLIDAE					
	Ancylidae	0	0	3	0	0
FAMILY P	LANORBIDAE					
	cf. Planorbidae	0	0	8	0	0
FAMILY P						
	Physella	0	-	0	_	8
	Physella hendersoni	0	0	35	0	0
CLASS BIVA						
ORDER VEN						
FAMILYS	PHAERIIDAE					
	Sphaeriidae	0	215	43	8	38
				Continue		

Table K-3 (continued). Phylogenetic list of taxa with counts for each station.Broadway outfall 04-May-04 – See Figure 2 for station locations.

4-May-04		3	4	5	6	6
Тахопотіс Group.	Identified Taxa	FL0936	FL0937	FL0938	FL0939	FL0939
						ժար
PHYLUM CRUST.						
CLASS MALACO	STRACA					
ORDER CUMAC	EA					
FAMILY BODO	TRIIDAE					
	aspis pustulata	0	0	3	0	0
ORDER TANAIE						
FAMILY PSEUI						
	geria rapax	0	0	0	2	0
ORDER AMPHIP						
FAMILY CORO	PHIIDAE					
	ocorophium	4	0	3	0	0
	ididierella bonnieroides	0	0	3	2	0
PHYLUM UNIRAI						
SUBPHYLUM HE						
ORDER COLLEM	IBOLA					
FAMILY ENTO	MOBRYIDAE					
	mobryidae	0	0	0	0	0
ORDER ODONA	ГА					
FAMILY GOMP	HIDAE					
Aphy	illa	0	0	0	0	0
FAMILY LIBEL	LULIDAE					
Libel	lulidae	0	0	3	0	0
HETEROPTERA-H	IEMIPTERA					
FAMILY CORIX	IDAE					
Cori	ridae	0	0	0	4	0
FAMILY BELOS	STOMATIDAE					
Belo	stomatidae	0	0	0	0	0
ORDER DIPTERA	ł					
FAMILY CERA	TOPOGONIDAE					
Cera	topogonidae	0	0	5	2	2
FAMILY CHIRC	NOMIDAE					
Chiro	onomidae	0	0	0	2	0
Tany	pus	0	15	10	4	4
	- onomidae (pupae)	0	0	0	0	0
	onomus	0	25	23	14	6
Cryp	tochironomus	0	5	0	0	0
	dichironomus	0	0	0	4	0
	pedilum	0	0	8	0	0
	pedilum illinoense gp.	0	0	0	4	0
	TOTALS	400	3716	3344	1446	1312

 Table K-4. Phylogenetic list of taxa with counts for each station. Broadway outfall 04-August-04 – See Figure 2 for station locations.

4-Aug-04		3	3	4	5	6
Taxonomic Group.	FL0936	FL0936	FL0937	FL0938	FL0939	
			մաթ			
PHYLUM ANNEL	IDA					
CLASS OLIGOCH	AETA					
FAMILY LUME	RICULIDAE					
	Lumbriculidae	0	0	0	0	10
FAMILY ENCH	YTRAEIDAE					
	cf. Enchytraeidae	0	0	0	0	0
FAMILY TUBIF	ICIDAE					
	Tubificidae	4013	93	917	1128	267
FAMILY NAID	DAE					
	Pristina	0	0	0	0	0
	cf. Pristina	0	0	0	0	0
	Dero cf. flabelliger	0	0	0	0	0
	Dero digitata complex	547	37	49	113	29
	cf. Haemonais waldvogeli	0	0	0	13	0
	cf. Pristinella	0	0	0	0	3
CLASS HIRUDIN	EA					
FAMILY GLOS:	SIPHONIIDAE					
	Glossiphoniidae	0	9	20	0	10
FAMILY HIRUI	DINIDAE					
	Hirudinidae	0	5	0	0	3
PHYLUM MOLLU	SCA					
CLASS GASTRO	PODA					
	Gastropoda	0	0	0	7	2
ORDER MESOGA	ASTROPODA					
FAMILY VIVIPA	ARIDAE					
	Viviparus georgianus	0	0	2	7	8
FAMILY THIAH						
	Melanoides	0	0	0	0	0
	Melanoides tuberculata	304	23	14	50	582
ORDER BASOM	MATOPHORA					
FAMILY ANCY	LIDAE					
	Ancylidae	0	0	2	0	0
FAMILY PLAN	ORBIDAE					
	cf. Planorbidae	0	0	0	0	12
FAMILY PHYSI	DAE					
	Physella	0	0	2	0	0
	Physella hendersoni	0	0	0	2	4
CLASS BIVALVIA						
ORDER VENERO	IDA					
FAMILY SPHA						
	Sphaeriidae	0	23	0	2	0
				a		
				Continue	d next pag	ge

 Table K-4 (continued). Phylogenetic list of taxa with counts for each station.

 Broadway outfall 04-August-04 – See Figure 2 for station locations.

4-Aug-04 Taxonomic Group/Identified Tax PHYLUM CRUSTACEA	a	TT 0000				
PHYLIIM CRUSTACEA		FLU930	FL0936	FL0937	FL0938	FL0939
PHYLUM CRUSTACEA			dup			
			-			
CLASS MALACOSTRACA						
ORDER CUMACEA						
FAMILY BODOTRIIDAE						
Cyclaspis pu	stulata	0	0	0	0	0
ORDER TANAIDACEA						
FAMILY PSEUDOZEUXIDAE						
Hargeria rap	ax	0	0	0	0	0
ORDER AMPHIPODA						
FAMILY COROPHIIDAE						
Monocoroph	ium	0	0	0	0	0
	la bonnieroide	0	0	0	0	0
PHYLUM UNIRAMIA						
SUBPHYLUM HEXAPODA						
ORDER COLLEMBOLA						
FAMILY ENTOMOBRYIDAE						
Entomobryida	ae	0	0	4	0	0
ORDER ODONATA						
FAMILY GOMPHIDAE						
Aphylla		0	0	2	0	0
FAMILY LIBELLULIDAE						
Libellulidae		0	0	4	0	4
HETEROPTERA-HEMIPTERA						
FAMILY CORIXIDAE						
Corixidae		0	0	0	0	0
FAMILY BELOSTOMATIDA	Ε					
Belostomatid		0	0	2	0	0
ORDER DIPTERA						
FAMILY CERATOPOGONIDA	λE					
Ceratopogoni		0	0	0	0	0
FAMILY CHIRONOMIDAE						
Chironomidae	,	0	0	0	0	0
Tanypus		0	0	0	0	0
Chironomidae	(pupae)	0	0		0	0
Chironomus	V-1-1/	0	0	4		0
Cryptochiror	iomus	0	0	. 0	0	0
Goeldichiron		0	0	0	0	0
Polypedilum		0	0	0	0	0
	illinoense gp.	0	0		0	0
	Qr.				Ŭ	
	TOTALS	4867	193	1028	1327	940

APPENDIX L

CHLOROPHYLL

Appendix L-1. Chlorophyll concentrations measured at different locations starting in front of the CDS unit (#934) going through the pond and ending below the bridge (939). See Figure 2 for site locations.

Date and		Chlorophyll a	Pheaophytin	Chlorophyll a	Chlorophyll b	Chlorophyll c
Site Location	site	Monochro	Monochro	Tricho	Tricho	Tricho
(see Figure 2)		ug/L	ug/L	ug/L	ug/L	ug/L
8/14/2002						
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	16.1	14.6	56.3	5.3	5.4
FLO0000936	936	37.8	22.0	52.0	8.7	6.4
FLO0000937	937	42.9	32.9	63.5	11.6	5.3
FLO0000938	938	276.0	89.6	335.0	80.3	9.3
FLO0000939	939	7.9	4.5	10.7	2.6	1.2
5/12/2004						
FLO0000934	934	3.1	4.8	5.9	2.0	2.6
FLO0000935	935	2.9	4.7	5.7	1.6	1.6
FLO0000936	936	52.8	21.6	66.7	16.2	3.4
FLO0000937	937	41.1	26.3	57.5	15.2	9.3
FLO0000938	938	48.4	30.8	67.5	18.6	9.3
FLO0000939	939	41.1	24.6	56.6	13.2	5.1
8/24/2004						
FLO0000934	934	9.9	4.2	12.5	3.6	1.4
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	10.0	3.6	12.2	4.1	2.1
FLO0000937	937	N/A	N/A	N/A	N/A	N/A
FLO0000938	938	39.3	11.7	46.8	15.0	2.2
FLO0000940	939	N/A	N/A	N/A	N/A	N/A
2/7/2005						
FLO0000935	934	0.5	0.5	0.5	0.5	0.5
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	N/A	N/A	N/A	N/A	N/A
FLO0000937	937	4.2	3.4	6.3	1.3	0.5
FLO0000938	938	N/A	N/A	N/A	N/A	N/A
FLO0000939	939	3.3	2.4	4.8	0.5	0.5
3/21/2005						
FLO0000934	934	29.6	11.4	37.0	9.0	1.2
FLO0000935	935	19.5	8.4	24.9	6.2	1.6
FLO0000936	936	N/A	N/A	N/A	N/A	N/A
FLO0000937	937	15.3	5.1	18.6	5.4	1.1
FLO0000938	938	N/A	N/A	N/A	N/A	N/A
FLO0000939	939	N/A	N/A	N/A	N/A	N/A
5/23/2005						
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	95.3	26.8	114.0	18.7	2.6
FLO0000937	937	N/A	N/A	N/A	N/A	N/A
FLO0000938	938	75.5	16.4	87.5	10.8	3.0
FLO0000939	939	138.0	35.5	164.0	13.0	5.2
				COL	ntinued next p	age

Date and		Chlorophyll a	Pheaophytin	Chlorophyll a	Chlorophyll b	Chlorophyll c
Site Location	site	Monochro	Monochro	Tricho	Tricho	Tricho
(see Figure 2)		ug/L	ug/L	ug/L	ug/L	ug/L
4/26/2005						_
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	14.5	7.3	19.2	3.7	1.1
FLO0000937	937	N/A	N/A	N/A	N/A	N/A
FLO0000938	938	14.7	9.4	10.7	3.8	1.0
FLO0000939	939	N/A	N/A	N/A	N/A	N/A
6/26/2005		20.7				
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	39.5	13.1	48.2	9.4	1.9
FLO0000937	937	39.6	12.2	48.0	10.6	1.8
FLO0000938	938	N/A	N/A	N/A	N/A	N/A
FLO0000939	939	52.1	23.6	67.3	15.3	2.2
8/15/2005						
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	N/A	N/A	N/A	N/A	N/A
FLO0000936	936	21.4	7.1	26.2	5.2	1.3
FLO0000937	937	32.3	15.9	42.5	9.7	2.1
FLO0000938	938	N/A	N/A	N/A	N/A	N/A
FLO0000939	939	78.0	30.8	98.2	19.0	6.8
10/12/2005						
FLO0000934	934	N/A	N/A	N/A	N/A	N/A
FLO0000935	935	54.7	21.6	68.8	14.6	2.1
FLO0000936	936	N/A	N/A	N/A	N/A	N/A
FLO0000937	937	51.4	22.4	65.7	13.3	2.6
FLO0000938	938	N/A	N/A	N/A	N/A	N/A
FLO0000939	939	36.1	14.8	45.7	9.8	3.6

Appendix L-1 (continued). Chlorophyll concentrations measured at different locations.

APPENDIX L

APPENDIX M

BACTERIA

Table M-1. Bacteria measured at Broadway Outfall. See Figure 2 for station								
locations. Stations are generally ordered from inside the pipe before the CDS unit								
to the outfall of the pond.								

		TOTAL COLIFORM COLONIES	FECAL COLIFORM COLONIES	TIME
8/14/2002	FLO935	8000	6300	
	FLO936	8300	560	
	FLO937	2700	460	
	FLO938	800	120	
	FLO939	2200	280	
	FLO940	1900	180	
	FLO941	640	120	
2/4/2003	FLO934	1280	30	
	FLO934	8000	20	
	FL0935	4200	30	
	FL0939	540	70	
12/1/2004	FLO934	TNTC	11000	1025
	FLO935	TNTC	28600	1030
	FLO934	240000	32800	1015
	FL0937	3800	226	1045
	FLO937	3900	187	1049
	FLO940	4500	288	1110
1/19/2005	FLO934	5800	620	1015
	FLO934	5400	1260	1030
	FL0935	5200	540	1020
	FL0937 FL0937	4000 6200	90 160	1000 1005
	FL0939	2400	140	950
3/28/2005	FLO934	46000	TNTC	1055
3/20/2003	FL0935	TNTC	TNTC	1100
	FLO937	24000	3000	1115
	FLO937 FLO939	TNTC 500	2300 90	1117 1130
4/26/2005	FLO934 FLO935	12000 20000	3100 1700	1215 1210
	FL0938	4500	600	1210
5/23/2005		20000	6400	1215
3/23/2003	FL0935	17000	3100	1215
	FL0937	4000	600	1240
	Too numerous t	o count)		
ļ				

APPENDIX N

PICTURES

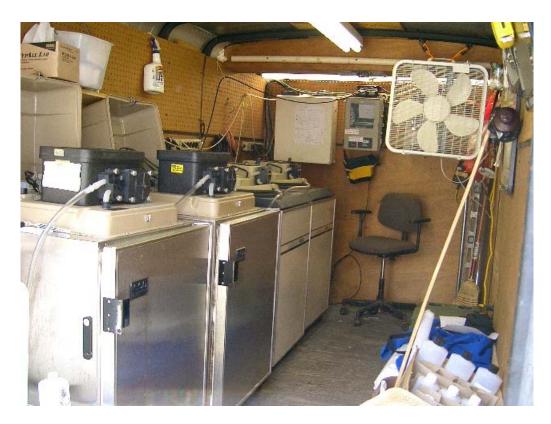
June 2002 Inflow to pond

March 2003 Inflow to pond

November 2003 Outflow of pond

January 2005 Inflow to pond.

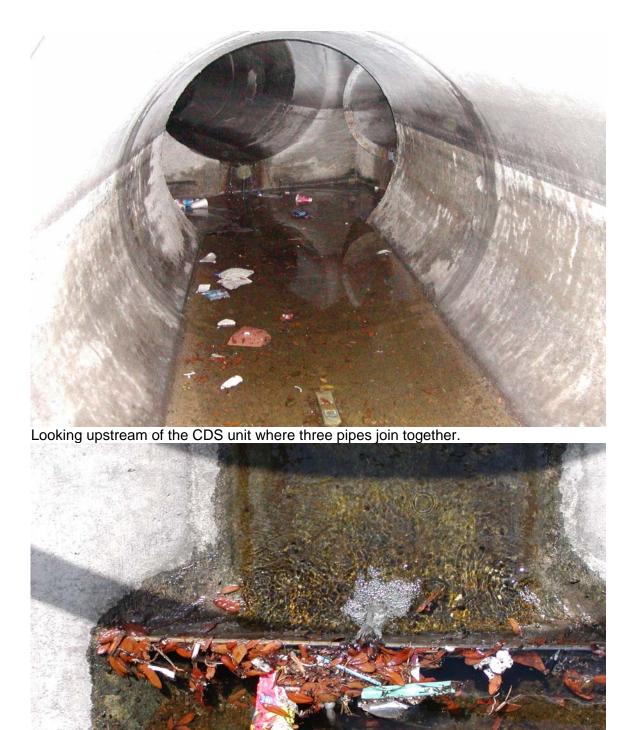
Installation showing CDS to left, diversion weir in collection chamber of pipe


Collecting water quality samples at the outflow station

Sorting through dumped material of CDS unit to retrieve litter.

Cleaning out CDS unit

View of instrument trailer showing four refrigerated samplers for collecting storm flow and base flow samples. The CR10 and ISCO water level sensor is shown on the back wall.


Inside the pipe looking out toward the pond. The base flow weir is shown.

Entrance to CDS unit showing staff gauge and trash during base flow conditions. The diversion weir is off to the right.

Looking down into the CDS unit from the top.

Looking down at base flow weir showing debris backing up water & creating measurement problems.